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Abstracta In this project we undertake a comprehensive clustering analysis of
PM10 levels in the Lombardy region (Italy), employing four different Bayesian mod-
els to account for the complex nature of our data, which comprise spatio-temporal
measurements of PM10, together with many other environmental variables, col-
lected from various monitoring stations displaced across the entire region.
The main objective was to leverage on covariates, station locations and time trends
to cluster weekly PM10 data over a one-year period. Our analysis revealed distinct
clusters for each time step, with a noteworthy influence of morphological terrain
characteristics (e.g. altitude, wind speed) and anthropological factors (e.g. agri-
cultural activities, vehicles and road transports, etc.).
The analysis was executed concurrently across a set of four models, to study the
different interactions and combinations of spatio-temporal aspects and covariates
information. Despite some variations among the models, that however highlighted
peculiar patterns and characteristics which each model independently dwelt on, a
unanimous consensus emerged regarding the overall division between the stations.
This study contributes valuable insights into the delicate interaction of spatial,
temporal, and covariate variables in shaping PM10 levels, providing a robust foun-
dation for understanding the clustering dynamics in the Lombardy region.

aSee https://github.com/federicomor/progetto-bayesian for all the project codes
and https://federicomor.github.io/assets/figures/visualize.html for the visual-
ization page.

1. Introduction

Particulate matter with a diameter of 10 micrometers or less, known as PM10, comprises small airborne particles
which pose serious health risks upon inhalation due to their ability to deeply penetrate the respiratory system.
As a consequence, a meticulous monitoring of their levels is crucial for a comprehensive air quality assessment
and the subsequent safeguarding of public health.

The PM10 particles arise from different sources, mainly combustion processes (like waste burning, house heat-
ing, energy generation and consumption), industrial and agricultural activities, vehicles exhaust, construction
and demolition operations [otEU24]. This wide context poses under great attention the highly industrialized
countries, such as Italy, which indeed in 2017 faced a significant pressure from the European Commission to
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address the persistently high levels of PM10 particles [Com17]. Both annual and daily limits were too often
exceeded by several regions, with the most critical one being Lombardy.

This paper therefore embarks on the project which aims to identify both natural and anthropogenic factors
contributing to elevated PM10 levels in the Lombardy region, employing a Bayesian clustering analysis.

Drawing upon data from the Agrimonia project, our focus relies on weekly averages values over a one-year
timeframe. Our analytical approach involves the implementation of four models, including spatial and temporal
ones alongside with covariate-informed ones.

Now, in Section 2, we will delve into the dataset exploration and cleaning process, followed by Section 3 with
a detailed presentation of each individual model, and to conclude with the models comparison and subsequent
interpretation of the results in Section 4. Visualization played a pivotal role in our exploration, having to deal
with a spatial and temporal framework as well as many available covariates, from which in the end we drew
the interpretation insights. Arguably, our lack of technical knowledge in the phenomenon of the air pollutants
required a fully data-driven approach, but in the end we assessed the validity of the our results and interpretation
through a more specific research on the field under analysis.

2. Dataset inspection and processing

The Agrimonia dataset, developed in [FRFM+23], spans from January 1, 2016, to December 31, 2021, recording
observations from a network of 141 stations in the surroundings of Lombardy region. The dataset gathers
measurements from five different covariate groups: air quality (AQ), weather and climate (WE), pollutants’
emissions (EM), livestock (LI), land and soil characteristics (LA). In total there are 38 covariates, with our
target variable lying in the AQ group, namely AQ_pm10. Each row of the dataset is distinctively recognized by
the combination of the station code and the date, making a total of 309072 rows consisting of daily recorded
values. The geographical coordinates, comprising longitude and latitude, are also available for each station in
the dataset.
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Figure 1: Map of the 105 selected stations after the data preprocessing (on the left),
together with the physical map of the region under analysis (on the right).

The goal proposed for the project was “clustering weekly data of one year of PM10”, and as such we started
by selecting the year and then dividing the dataset by week. One main concern for the year selection was the
presence of missing data (NA) both in the target variable and in many other ones, as we can see in Figure 2.

About the covariates’ selection, we noticed a considerable scarcity in the AQ group, so we were forced to remove
them and save only our target variable PM10. This may look like a relevant information loss, since the other
pollutants like PM2.5, SO2 or NH3 could have related well to the PM10 concentrations; but actually the EM
group of variables, related to emissions, stores information about those pollutants, so the information that they
carried was still preserved. We also removed variable LA_soil_use, which was considerably empty for most of
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Figure 2: Heatmap of the missing values of all the variables in the available dataset.
The percentage is computed considering all the six years data (that is, before the
year selection). On the rows there are the variables, on the columns the original 141
stations.

the stations. After this procedure we remained with 36 variables, of which 31 covariates and 5 context-related
(the temporal and spatial coordinates, the target variable and the station IDs), from the original 43.

Regarding the PM10 levels, instead, there were many stations which were totally lacking of any recorded value,
as revealed by Figure 3; therefore we removed them and we were left with 105 stations out of the original 141,
which is still a very representative set. After this cleaning procedure, a natural choice for the year would have
been to select the most recent one, but due to 2021 showing an increase in the missing values and being it still
close to the covid-affected period after 2019, we decided in the end to choose 2018, hoping that the present
years, somehow recovered from the pandemic anomalous levels, would be more similar to that one.

 2016  2017  2018  2019  2020  2021

Figure 3: Heatmap of the missing data (in white) of the PM10 values. On the rows
there are all the original 141 stations, on the columns all the 2192 days composing
the six years.
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Then we moved to the task of the weekly averaging. For the covariates, the selected year showed to be almost
full of values except for three stations, which were lacking of all values in three variables of the LI and LA
groups. Since this was a small problematic case and concerned stations outside the Lombardy area, the one
of primary interest, we didn’t deem necessary to remove them completely, but instead we filled in the missing
data with an average of the values of the three closest stations on the map.

Also for the PM10 data there were some missing spots, sparse but affecting almost all stations. Initially we
thought of filling them by using, for each station, a linear interpolation between the closest-in-time present data
around a set of missing ones. This would have allowed the build of the weekly division by simply averaging over
those (now all complete) values. But we thought that this method would have induced a double approximation:
the first one in the NA filling and the second one in the weekly averaging. So in the end we decided to directly
build the weekly division by averaging not necessarily on the complete set of seven days, but just on the available
values in a given week. We applied this procedure on all the numeric variables, as well as on the categorical
ones (e.g. the wind direction) but using the mode instead of the mean.

In this way we got the final dataset, on which we then performed a logarithmic transformation to the PM10

variable, to achieve a normal distribution, followed by a shift to bring them into having zero mean. The
obtained trend is depicted in Figure 4. We also standardized the numerical covariates, including the spatial
coordinates. This allowed us to enhance the suitability of the data for the subsequent statistical models, which
for example assumed a normal distribution of the target data, and in general worked better using centered
data, to accommodate the prior distribution support of the parameters. This comprehensive processing dataset
formed the foundation for our investigation into the factors influencing PM10 levels in the Lombardy region.
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Figure 4: Trend of the PM10 values in the 2018 year, for the 105 selected stations,
after the data processing step (log-transformation and centering).

3. Models

For our analysis we looked into models which could tailor the complex nature of our data, exploiting spatial
and temporal information, together with covariates, with a clustering target in mind. Unfortunately, there was
no “holy grail” which could manage to harness all those levels of information, but nonetheless we found four
models which in the end worked well for our task.

We will now see them in details, but for a clear preview of their characteristics refer to Table 1.
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model name Time Space Covariates
sPPM ✗ ✓ ✗

DRPM ✓ ✓ ✗

Gaussian PPMx ✗ ✗ ✓

Curve PPMx ✗ ✗ ✓

Table 1: Summary of the functional characteristics of the models at hand. All of
them were able to perform clustering natively.

3.1. sPPM model

We started with a purely spatial model, developed in [PQ16], which consisted in a Gaussian likelihood and a
spatial PPM prior on partitions. This design aims to cluster together observations (the stations, in our case)
which exhibit a common trend in the PM10 values but keeping into account their spatial locations, assuming
that stations closer in space tend to show a similar behavior, a priori. That is, in addition to the measurements
of the target variable, the proximity of observations influences their partitioning. The full model is the following:

Y (si)|ci, µ⋆
ci(si), σ

2 ind∼ N (µ⋆
ci(si), σ

2) i = 1, . . . , n

µ⋆
h(si)

iid∼ N (µ0, σ
2
0) h = 1, . . . , kn

σ ∼ U(0, A)
µ0 ∼ N (m, s20)

σ0 ∼ U(0, B)

{ci}ni=1 ∼ sPPM

(1)

where N and U denote the Normal and Uniform laws. We can see how response variable is modelled trough
a Normal distribution, of cluster-specific mean and variance, while the partition variable ρn, representing the
allocation variables ci, has a spatially-informed prior, defined by

Pr(ρn|s) ∝
kn∏
h=1

C(Sh, s
⋆
h)

where kn is the number of clusters, C(Sh, s
⋆
h) is a cohesion function that measures how likely elements of Sh

are clustered a priori, while s⋆h = {si : i ∈ Sh} is the vector carrying the spatial information of the cluster h. In
our dataset we had si = (latitudei, longitudei) for all units i = 1, . . . , 105.

M method MSE MSPE LPML WAIC

M = 0.01

C1α=1 0.11982303 0.05766370 5.2563275 -25.203210
C1α=2 0.11312414 0.05604355 6.4879950 -22.511087
C2 0.12443479 0.05083555 1.1840116 -11.885645
C3 0.06498192 0.06338080 -0.6759250 -11.933451
C4 0.10825500 0.05733057 3.9262961 -28.335136

M = 0.1

C1α=1 0.11524981 0.06309311 1.1684726 -17.622761
C1α=2 0.11843205 0.06461063 -2.2174683 -7.156824
C2 0.13093623 0.05086688 1.0103033 -14.315375
C3 0.07020742 0.06177079 0.8533671 -14.122342
C4 0.10878478 0.04986580 6.8232228 -30.527901

M = 1

C1α=1 0.11678516 0.07271717 -12.0532115 7.392855
C1α=2 0.11821033 0.08026768 -26.2609990 30.812101
C2 0.11386666 0.05615466 -5.0202824 -8.652450
C3 0.09224991 0.06171361 2.9784456 -19.611827
C4 0.12542675 0.04993301 6.1906711 -28.117866

Table 2: Model fit comparison of the different choices for the cohesion functions the
parameter M, using the data of 2017.
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For the model fit, implemented on R through the PPMSuite package, we tested the four different cohesion
functions which were there available, alongside with different values of a parameter M on which the functions
depend, in order to look for the best arguments which could suit our dataset. For the first two cohesion
functions a further tuning was available through a parameter α. We ran this selection procedure using the
2017 year dataset, as we split the stations into train and test sets to build the fit on the former and evaluate
the performance on the latter. The performance scores were both about the statistical fit (LPML and WAIC)
but also on accuracy (MSE and MSPE, which are mean squared errors associated to train and test data,
respectively), as we used the generated clusters to extract predictions for the left out stations of the test sets.
The results are summarized in Table 2. Since the variability of the metrics was similar, and to be robust of
outliers, we compared their median.

According to those tests, the best combination for the model parameters was choosing the cohesion function
C4 with M = 0.1. Therefore we selected them to fit the final sPPM model on the 2018 data of our interest,
collecting 20000 MCMC iterations, discarding the first 10000, and thinning them by 10. For this model, and
for the other ones which do not include time, we just ran 53 different fits, one for each week.

3.2. DRPM model

The second model we focused on, and noticeably the only one including time, is the Dependent Modeling of
Temporal Sequences of Random Partitions (DRPM), developed in [PQD22]. The main objective of the authors
was to define a spatio-temporal model capable of performing “smooth” clusterings, i.e. a framework which would
favour a gentle evolution in time of the units allocations, rather than abrupt (and therefore less interpretable)
changes in them. This result was clearly reached also in our analysis, as we will describe more precisely in section
4.3, where we witnessed a more regular trend in the clusters definition for the DRPM model with respect to the
other ones.

The model starts by assuming a first order dependence relation between clusters, meaning that the conditional
distribution of ρt given ρt−1, . . . , ρ1 just depends on ρt−1. This idea is implemented using a temporal dependence
parameter α ∈ [0, 1] which controls the level of flexibility in the cluster allocation variables: the higher is α, the
higher is the tendency of units to remain in their current cluster, meaning that clusters ρt+1 will be similar to ρt.
Conversely, when α approaches 0, we would get more independent clusters. In this way the clusters allocations
variables ct will follow a temporal Random Partition Model (the entry tRPM in the model formulation) driven
by the sequence of αt and the Dirichlet dispersion parameter M . The full definition of the model is:

Yit|Yit−1,µ
⋆
t ,σ

2⋆
t ,η, ct

ind∼ N (µ⋆
citt + η1iYit−1, σ

2⋆
citt(1− η21i)) i = 1, . . . , n and t = 2, . . . , T

Yi1
ind∼ N (µ⋆

ci11, σ
2⋆
ci11)

ξi = Logit( 12 (η1i + 1))
ind∼ Laplace(a, b)

(µ⋆
jt, σ

⋆
jt)

ind∼ N (θt, τ
2
t )× U(0, Aσ)

θt|θt−1
ind∼ N ((1− ϕ1)ϕ0 + ϕ1θt−1, λ

2(1− ϕ2
1))

(θ1, τt) ∼ N (ϕ0, λ
2)× U(0, Aτ )

(ϕ0, ϕ1, λ) ∼ N (m0, s
2
0)× U(−1, 1)× U(0, Aλ)

{ct, . . . , cT } ∼ tRPM(α,M) with αt
iid∼ Beta(aα, bα)

(2)

About the target variable Yit, the authors modelled it with a Normal law with mean µ⋆
t and variance σ2⋆

t . The
mean of that distribution actually incorporates a more sophisticated modelling introducing an autoregressive
part both at the observations and at the parameters (or “atoms”) level. Indeed, the Yit depend on Yit−1 through
the parameter ηi1, while for the µ⋆

jt the autoregressive structure is inside the parameter θt which enters in his
prior distribution definition.

This deepening level allowed us to test different subsets of models and to select the best one which would suit
our data. Through their package drpm on R, we fitted 8 different models based on the binary choices available
for those three key parameters: the α could be set constant or varying in time, while the η1i and ϕ1 could be
present (therefore introducing the autoregressive design) or not.

According to those tests, the best model for our scenario turned out to be the one using a time specific α and
with an autoregressive component just at the atoms level, while not for the observations. Surprisingly, the
model at his full complexity scored last in the ranking. We then we ran another fit on the best model, using
some further refined parameters in terms of samples collection, to get the definitive results. Each fit of the 8
models tested above took around one hour, while the final fit took a little more than two hours and we ran
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model at test LPML WAIC
model η:No ϕ:Yes αt:Yes 1077.64 -2366.48
model η:No ϕ:No αt:Yes 950.17 -2117.36
model η:Yes ϕ:No αt:No 724.34 -1474.02
model η:No ϕ:Yes αt:No 693.04 -1458.70
model η:Yes ϕ:No αt:Yes 605.32 -1287.13
model η:No ϕ:No αt:No 504.41 -1129.83
model η:Yes ϕ:Yes αt:No 445.16 -913.62
model η:Yes ϕ:Yes αt:Yes 403.05 -1264.03

Table 3: Metrics values computed for the DRPM model selection, sorted by best to
worst. Higher LPML and lower WAIC values denote a better fit.

100000 iterations, discarding the first 60000, and thinning by 40; thus getting 1000 iterates. The high value of
burn in was deemed necessary after seeing some significant oscillations even after a lot of iterations, while the
thinning value was suggested by the authors and confirmed by the good trend of almost all our ACF plots (see
Appendix B for them).

3.3. Gaussian PPMx model

After sPPM and DRPM, which dealt with space and time, we started looking for models which could incorporate
the covariates, and as third choice we implemented a Gaussian PPMx model, still from the PPMSuite package
(the same of sPPM and of the later discussed Curve PPMx).

The approach of this model, presented in [PQ18], was to handle the covariates influence on the clustering
only through a calibration of the partition prior distribution. In this way the cohesion function now gets
updated with a term defined as a nonnegative function g(x⋆

h) of the cluster-specific vectors of covariates x⋆
h,

i.e. x⋆
h = {xi : i ∈ Sh} with xi the covariates of unit i. The function g(x⋆

h) is called similarity function and
measures the homogeneity of those covariates, leading to higher values when there is more likeness among them.
The full model can be defined as follows:

Yi|µ⋆
j , σ

⋆
j , Si

iid∼ N (µ⋆
Si
, σ⋆2

Si
) i = 1, . . . , n

σ⋆
j ∼ U(0, A) j = 1, . . . , kn

µ⋆
j |µ0, σ

2
0

iid∼ N (µ0, σ
2
0)

σ0 ∼ U(0, A0)

µ0 ∼ N (m, s2)

Pr(ρn|x) ∝
kn∏
h=1

C(Sh)g(x
⋆
h)

(3)

where n = 105 is the number of subjects under analysis (the stations), while kn the number of clusters. In our
fit we decided to use the the auxiliary similarity function, defined as

g(x⋆
h) =

∫ ( ∏
i∈Sh

q(xi|ξ⋆h)
)
q(ξ⋆h) dξ

⋆
h

where q(xi|ξ⋆h) and q(ξ⋆h) are density functions whose selection depend on the covariate types.

Having decided the structure of the model we dived into the selection of the covariates. In order to make
the results as interpretable as possible, we considered to restrict us to a subset of five variables, selected by a
maximization of goodness of fit metrics such as LPML. More precisely, before obtaining the final model, we
considered intermediate models, in a forward selection style, aimed solely at choosing the most informative
variables.

Following this idea we firstly compared 31 different models, each characterized by a single variable, and we
selected as the first covariate the one corresponding to the model with the highest LPML. This turned out to
be Altitude, and indeed from the plots available in the visualization page or showed in Section 4, altitude
information was a distinctive key of the clusterings. After this first iteration we considered 30 different models,
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each characterized by Altitude and another variable, among the present ones in the dataset, and comparing
the derived models we selected the second covariate. Repeating this procedure we obtained the best subset of
five covariates, in terms of LPML, which consisted of Altitude, EM_nox_sum, WE_mode_wind_direction_100m
(a categorical variable), WE_wind_speed_100m_max and LA_lvi.

Once we had finalized the set of covariates to use in the model, we further refined the choice of the priors and
fitted the final model. Not seeing any particular trouble about the convergence diagnostics, we limited to run
4300 MCMC iterates were collected, with a burn-in of 300.

3.4. Curve PPMx model

The last model that we considered was the functional version of Gaussian PPMx model, called Curve PPMx.
This method applies a hierarchical functional data model, in which B-spline coefficients undergo clustering
employing either a PPM or a PPMx prior approach on partitions, but using the same approach of the Gaussian
PPMx. The PPM and PPMx priors are used to group similar elements based on their characteristics, where
the PPMx prior integrates the concept that individuals sharing similar covariate values are more likely to be
grouped together [PQ15]. The difference is that now the “elements” are no more point realizations but become
functional curves.

The use of B-splines allows for the flexible clustering of functional realizations based on the characteristics of
the B-spline coefficients and covariates [MQR11]. More precisely, the model can be represented as follows:

Yi(t) =

p∑
j=1

βijBj(t) + εi(t) i = 1, . . . , n (4)

where Yi(t) is the set of functional realizations, Bj(t) is the j-th B-spline basis function, while βij are the
B-spline coefficients to be clustered. The term εi(t) represents the error component, and t the time variable.
The PPMx prior is then used to model the distribution of the B-spline coefficients βij and their clustering based
on covariates [ZNS11].

Since the model uses the same approach of Gaussain PPMx, we ran it with the same set of covariates mentioned
in Section 3.3. We fitted the model for each week of 53 weeks of the year so that we could observe how the
clusterings changed over time, as otherwise the use of the full set of weeks as timeframe would have produced
time informed clusterings but fixed in all instants. In this way Curve PPMx model is in principle able to account
for time, as DRPM, but rather than the latter, which allows change points in the clusters, the former would
produce just a summary, a global clustering of the units over the selected timespan.

The fit function had several hyperparameters to be tuned, and this allowed us to test different models and
choose the one with the best fitting metrics, meaning highest LPML and lowest WAIC values. We tested three
values of the scale parameter M , related to the dispersion parameter of a Dirichlet process, and different number
knots used for the splines basis. The summary of the tests are reported in Table 4.

M #knots LPML WAIC

M = 0.1
20 124.1328 -495.2763
40 2293.467 -4796.269

M = 1
20 78.86386 -398.1941
40 2072.848 -4392.669

M = 10
20 126.533 -507.5256
40 2064.878 -4365.364

Table 4: Model fit comparisons for the different scale parameters and number of
knots. Higher LPML and lower WAIC values denote a better fit.

According to those tests we chose M = 0.1 and a number of knots equal to 40. The run of all the fits with these
best hyperparameters for the entire timeframe took around 2 hours. We set the number of iterations equal to
10000, using a burn-in of 5000, and thinning by 5. Those parameters allowed us to have the good trend of
almost all our ACF plots, as reported in Appendix B.

3.5. Linear Model

Beside the described models, we thought it could have proved useful to implement also a baseline model to be
used for comparison, variable selection and a better insight on the data.
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With respect to the more complex models described in the previous sections, we implemented a simpler model
which would grant us faster fits and the possibility of trying out a vast range of methods. With the target in
mind of not being too complex but allowing the inclusion of covariates, we chose the linear approach and, since
it wouldn’t have been able to capture spatial variability anyway, we actually implemented a model for each
station, leaving the coordinates and altitude out. The general structure was the following:

Yi|xi,β, σ
2 ind∼ N (xT

i β, σ
2) i = 1, . . . , n

β ∼ Np(b0, σ
2B0)

(5)

The models considered the numerical covariates linearly but tried to enable more variability in time by consid-
ering also its sine, cosine and square transformations.

The first idea was to also develop a clustering procedure on the linear model, maybe switching to linear mixed
effects models and grouping together the stations according to the similarity among the betas, but it was soon
discarded as we deemed it redundant, since we already had different models more suited for a precise and
explainable clustering. Therefore we decided to just focus on variable selection instead. Since at our disposal
we had plenty of covariates it would have been extremely long and computationally heavy to try methods
based on partitions of combinations of covariates or spike and slab; and consequently we firstly implemented
the model through JAGS to try and use another kind of selection method as seen in [KM98]. In particular,
this procedure returned a matrix with confidence quantiles on the columns and the covariates on the rows, with
value 1 if the covariate was considered relevant at that confidence and 0 otherwise. Our idea was then to select
a quantile, keeping only the corresponding column as a vector, and sum element-wise the values for all stations,
expecting an higher value in correspondence of a useful covariate to select while a significantly lower one for
covariates discarded by most stations. Unfortunately, this attempt did not lead to any solid conclusion, since
even changing the threshold and hyperparameters the final vector presented very similar values on all covariates,
usually between 50 and 60, suggesting that all variables had been selected only for about half the stations, and
none was significantly more important than the others.

For this reason we moved to Bayesian lasso and horseshoe methods, using the corresponding R packages and the
same count-based approach as before, since both methods returned a binary vector indicating whether or not
to keep a variable. Horseshoe analysis was inconclusive, discarding all covariates, while lasso showed a great
weight on the precipitation variable (WE_tot_precipitation), and a more moderate but still interesting on
the percentage of total green area of low and high vegetation type (LA_lvi and LA_hvi). Indeed these last two
variables showed also a good separation in the mode clustering plots, so they actually resulted to be relevant,
as we will see in the plots of Section 4.

4. Analysis of the results

As we can see in the summary clusterings of Figure 5, almost all models exhibited a stratification pattern.
Regions with flat terrain generally displayed higher PM10 concentrations and were frequently clustered together,
such as the Milan area or Milan and Mantua area. As elevation increased towards the Alps, fewer polluted
clusters were observed. In the southwest area, some noticeable station emerged consistently across all models,
clustering a small group of stations together but separately from the surrounding Milan cluster.

We now dive into the detailed interpretation of the clusters, where we focused our attention on a few set of
covariates which had the most distinct trend among clusters, were easy to interpret, and had a relevant and
meaningful influence on the PM10 concentrations. We report them in two separate sections, with plots (not
of all the four models, just for clarity and order) depicting what explained in the paragraphs. All the “bands”
appearing in the next plots refer to regions delimited by the 25% and 75% quantiles of the observations in the
clustering corresponding to that color, while the solid line refers to the median.

4.1. Morphological factors interpretation

The first class of relevant covariates includes altitude (Altitude) and vegetation characteristics (LA_hvi and
LA_lvi), together with total precipitations (WE_tot_precipitation) and maximum wind speed at 100m above
the ground (WE_wind_speed_100m_max).

Altitude and vegetation Elevation and green areas are complementary: at higher altitudes we find denser
vegetation, while at lower altitudes vegetation become sparser. The growth pattern of both types of vegetation
is consistent throughout the year, with high levels in summer and low levels in winter. We can interpret this
effect in two ways:
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Figure 5: Maps of the most frequent clusters, throughout the 53 weeks of 2018, for
all the models. The color palette is also informative, as clusters are colored from
lower on average values of PM10 (in blue) towards higher on average values (in red).

1. it’s the altitude that brings the PM10 down; or
2. it’s the more vegetation which contributes to reduce the PM10 levels.

The reason behind that could be that plants use their special micro-morphological structure to retain particulate
matter, while altitude helps simply because it implies distance from industrial areas. So, in general, high
vegetation and high altitude are typically correlated with lower PM10 levels, as we can see in Figure 6.

Total precipitations The total precipitation appears to influence the reduction of PM10 levels, as it is well
known how rainwater can take away air pollutants and carry away some of the particulate matter, to some
extent, by delivering and depositing the contaminants to the ground. This process is also known as precipitation
scavenging or washout. This phenomenon is evidenced also in our analysis by the events observed in November,
characterized by peaks in rainfall which corresponded to a drop in PM10 levels, clearly visible in Figure 7.

Max intensity of the wind speed at a height of 100m High intensity of the wind increases PM10 levels,
but this effect is mitigated by the presence of rain. For instance, in October, despite high levels of both wind
and rain, PM10 levels decrease. In December, when precipitation levels were low and the influence of rain could
be filtered out, showing how high wind speeds indeed elevated the PM10 levels, as we can see in Figure 8.

10



This is probably due to wind generating and moving dust from the ground (where pollutants may have been
deposited), a problem more highlighted in dry and rural areas such as the Lombardy valley.

Figure 6: (Model DRPM) Plots of the trend in Altitude and LA_lvi variables of
the mode clusters, showing how the high altitude and high vegetation are associated
to lower PM10 values (in blue and light blue).

Figure 7: (Model sPPM) Plots of the trend in WE_tot_precipitation and AQ_pm10
variables of the mode clusters, showing, around November, a peak in rainfalls and a
drop in PM10 concentrations.

Figure 8: (Model Curve PPMx) Plots of the trend in WE_wind_speed_100m_max and
AQ_pm10 variables of the mode clusters, showing, especially around December (where
the rain levels dropped), the correlation among high intensities of wind and high
concentrations of PM10.
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4.2. Anthropological factors interpretation

The second class of relevant covariates includes the effects of human activities on the other pollutants gener-
ation such as NOx and NH3, which can then affect the concentrations of PM10 by chemical transformations.
These variables are morally all the ones from the EM group (EM_nh3_agr_soils, EM_nh3_agr_waste_burn,
EM_nh3_livestock_mm, EM_nh3_sum and EM_nox_sum, EM_nox_traffic).

Emissions of NOx This other pollutant is positively correlated with PM10, with higher levels observed during
winters when PM10 values are also elevated. It’s particularly higher for clusters in regions characterized by
high levels of industrialization and transportation. This distinction is more pronounced in models incorporating
covariates, as we can see in Figure 9 in the case of the Gaussian PPMx model.

Figure 9: (Model Gaussian PPMx) Plots of the trend in EM_nox_sum and
EM_nox_traffic variables of the mode clusters, showing the clear separation reached
in the clustering. Interestingly we see an inverse trend in the yellow and red curves
(corresponding to the Monza province and the south region of Lombardy, respec-
tively) in the traffic emission variable, but it’s not clear why there is such a trend.

Emissions of NH3 and livestock In the Milan (and Mantua) area we noticed a strong presence of NH3

especially imputable to livestock farming, particularly during the central part of the year. Presumably, the
presence of NH3 from agricultural and breeding activities (pretty much the only source of that pollutant) also
contributes to the elevation of PM10 levels. Naturally, those areas corresponds to a high number of animals or
crops. An example of the trend of these covariates is displayed in Figure 10.

Figure 10: (Model DRPM) Plots of the trend in EM_nh3_agr_soils and
EM_nh3_livestock_mm variables of the mode clusters, showing the interesting trend
among the clusters and also a noticeable distinction, relevant since DRPM model
did not comprise covariates in its fit.

To conclude our analysis, we deemed it important to analyze the presence of certain small clusters in all models.
We can consider them as a sort of outlier sets, or just stations exhibiting a remarkable and distinctive behavior.
In fact, their PM10 values differ significantly from the other stations, displaying an opposite trend, with low
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levels in winter and high levels in summer. These stations are located in high-altitude regions, and are the blue
or light blue spots that we can see in the north-east and south-west part of the map of Figure 5. The Gaussian
PPMx model tends to group those stations together, in one single cluster, while the others keep them separated
into smaller and isolated chunks. Additionally, these outliers exhibit the lowest values of PM10 and EM_nox.
The causes behind this inverse trend surely include their position in elevated regions, suggesting maybe the role
of snow in lowering levels during the winter months [NFK+17], by capturing the pollutants particles instead of
releasing them in the air.

4.3. ARI metric comparison

A more numerical way to compare the clustering results is through the Adjusted Random Index (ARI), developed
by [HA85], which is a sort of correlation index which measures the similarity between clusterings. Given two
partitions ρ1 and ρ2, the ARI(ρ1, ρ2) describes the amount of accordance between them, i.e. the level of
agreement that they show in clustering the data. The ARI values are bounded above by one, which refers to a
perfect alignment, and have zero expected value, which refers to the case of comparing two randomly generated
partitions.
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Figure 11: Lagged ARI values of the four models.

This metric was developed as a correction of the Random Index (RI) to take into account the fact the some
concordance can happen by chance. While this correction is outside the scope of this analysis, the idea behind
the definition of the original index lies in computing the frequency of agreements for any possible pair of units.
Therefore we get RI(ρ1, ρ2) = (a + b)/

(
n
2

)
, where a is the number of pairs allocated in the same subset (i.e.

when the two units are clustered together in both ρ1 and ρ2 allocations) and b the number of pairs allocated in
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different clusters (i.e. when the two units do not belong to the same cluster in both ρ1 and ρ2 allocations).

This metric allows for example to compare a proposed clustering with the real one, if available, to see how good
is the matching; but in our case, where there was no correct answer, we used it to study the time evolution of
the clusterings and to check the agreement level among the different models.

Regarding the time evolution we studied the Lagged ARI values, meaning that for each model we computed
ARI(ρt, ρt+k) for t ∈ {1, . . . , 53} and for all the valid values of k. In this way we obtained an information about
the relation among the clusters throughout the year. As depicted in Figure 11, we can see how the DRPM
exhibits a gentle evolution of the clusters, in a sort of time persistency, where almost every ρt tends to be similar
to the subsequent clusterings, while losing connections with the ones of further away in time. Those regions
of similar colored squares, highlighting the correlated clusterings, also appear in sPPM and Gaussian PPMx,
but in a milder, less distinct way. Moreover, the latter displays a general dominance of high values, possibly
denoting a more rigid and recurrent structure in the definition of the clusters. About Curve PPMx there is
an interesting but quite erratic pattern, with an appearance of clear and intense spots where clusters tend to
remain similar to each other, like it happened in the DRPM case, but now with less regularity.
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Figure 12: Plot of the ARI values for each pairwise comparison of the models.

The other aspect that the ARI metric allowed to study was the agreement among the clusterings generated by
the models, to see if a sort of general consensus and division appeared clearly in all models. To study this we
computed ARI(ρM1

t , ρM2
t ) for t ∈ {1, . . . , 53} and for each pair of models M1 and M2 in the four that we fitted.

From this computation, which produced Figure 12, we can see how the level of agreement among the models
remained relatively consistent over time, indicating robustness in the modeling approach and coherence in the
clusters generated. More precisely, during the non-summer months, all models seemed to agree, since the ARI
values are always positive and quite high; and this is especially true for the classes of similar models. Indeed,
the pairs which showed on average the greatest similarity were Gaussian PPMx vs Curve PPMx, which share
the same underlying structure, and DRPM vs sPPM, which both incorporate the spatial information. This
significant level of similarity, even in models with substantially different architectures, is probably due to the
values of PM10 being more spread out in those fall-to-spring months, as we saw in Figure 4. Consequently, this
led the models to an “easier” task, as they could rely just on the dominant influence of the more distinctive
PM10 concentrations to generate clusters.

During the summer months, instead, we see an inverse trend, where there is some indecision and ambiguity in
the models agreement. This is probably due to the trend of PM10 which becomes more condensed and uniform
in that period, resulting in a lack of distinct patterns across stations and hindering the clustering task. In this
way models needed to rely on other aspects of their architectures, which being different may have led to the
different responses we see. Indeed, in that period we see two relevant disagreements, among DRPM vs the
Gaussian and Curve PPMx. This contrast can be explained by guessing that the PPMx models tried to exploit
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and put more trust on the information encoded in the covariates, while DRPM, in the absence of that, tried to
take advantage of the spatial and temporal characteristics that it only owned.

5. Conclusions

Our Bayesian clustering analysis of PM10 levels in the Lombardy region has yielded significant insights into
the complex interaction of spatio-temporal measurements and environmental variables. Through leveraging
covariates, station locations and time trends, we were able to cluster and interpret weekly PM10 data over a
one-year period, revealing distinct clusters at each time step but also on the wider level of the full year. All
this with the use of four different models, from which we gathered not only similarities, to extract general and
reliable comments, but also discrepancies, to see which peculiar characteristics were grasped by each model,
and the reasons behind them.

Our findings underscore the influential role of morphological terrain characteristics and anthropological factors
in shaping PM10 levels. Despite the said variations among the models, a broad consensus emerged regarding
the overall division between the monitoring stations, which could provide valuable insights into the intricate
dynamics of spatial, temporal, and covariate variables in PM10 concentrations, laying a robust foundation for
further understanding and addressing air quality challenges in the Lombardy region and beyond.

6. Further developments

Several avenues for a further development remain, presenting opportunities to enhance the depth and precision
of our analysis:

• Use previous years data for model priors In our approach we decided to standardize the covariates
to make them suit the given prior distribution parameters in the model. But of course another idea
could have been to keep the original covariates and consider incorporating data from the preceding years
to establish fine tuned priors for the models. While our approach surely eased the models convergence,
integrating historical data could offer additional insights and refine the robustness of our findings.

• Distinguish between weekends and weekdays Rather than gather data by weeks, this alternative
differentiation could uncover different patterns, associated to more specific and human-related factors and
contributing to a more nuanced understanding of particulate matter dynamics.

• Ensemble modeling Meaning that in principle we could get potential benefits by combining the outputs
of the different models we obtained. This approach could enhance the overall accuracy and reliability
of the clustering analysis, since by leveraging the strengths of individual models we can obtain a more
comprehensive and robust estimation of the identified clusters.

• Complete the DRPM model Being remarkably the only model including space and time, a natural
idea could be working on an update which include also covariates, to make a really final and “definitive”
model.

These proposed extensions aim to further refine our methodology, enriching the interpretability of results and
providing a more extensive understanding of the intricate factors influencing PM10 levels in the Lombardy
region.
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A. Visualization methods

A pivotal component of a robust statistical analysis lies in the effective interpretation of results. To address
this crucial aspect, we developed a sort of library of auxiliary functions, enabling us to visually investigate the
various aspects of our research.

Given the intrinsic temporal and spatial dimensions of our dataset, we opted for a dynamic approach by creating
videos, animations, and an interactive html page alongside the classical images. For the visualization of spatial
variables, we devised two principal tools: a grid map and an expanding circles plot.

• Grid Map This tool exploits a distinct dataset inside the Agrimonia ones, which includes measurements
across the entire region organized on a grid of evenly spaced points, rather than just the records we got
through the station measurements. This finer dataset offers a panoramic overview of key variables, such
as altitude and weather measurements, providing a comprehensive understanding of spatial patterns and
how they evolve in time.

• Expanding Circles Plot Focused on station-level measurements, this tool illustrates the magnitude of
variables by properly setting the radius and color intensity of the circles centered around each station.
This approach granted us insights into more localized patterns, enhancing our comprehension of variable
distribution across the region.

Finally, to enhance the clarity of our cluster representations, we devised a function that establishes connections
between stations within the same cluster in a graph structure. These connections are formed by solving a
minimum spanning tree problem, to avoid the drawing of redundant or confusing edges among clustered stations;
a strategic approach chosen to yield a more organized and visually coherent representation of the clusters.

B. MCMC diagnostics

Here we present the plots that we used to check the convergence of the MCMC values generated by the models
fit functions. They are, for summary purposes, just on two of the most relevant parameters of each model, and
on weeks running from 1 to 50 with jumps of length 7.

We used trace plots to ensure that the chosen values for the burn-in were high enough to remove any unstable
behaviour in the iterates. However, even after really high burn-in periods (e.g. 60000 in DRPM), occasionally
there were still some oscillations, but by looking at the y axis we can see that there is no significant variation
after all. Also sometimes there are divergent iterations, especially in the σ2 trace plots. We think that these
small issues were due to the complexity of the models, spanning on lots of subjects (the 105 stations) and several
time instants (the 53 weeks), together with implementing a deep hierarchical structure. We also looked at ACF
plots to tune the thinning parameter, by seeing the trend of the auto correlation on subsequent iterates.
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Figure 13: Trace and ACF plots of parameters σ2 and µ of the DRPM model.
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Figure 14: Trace and ACF plots of parameters σ2 and µ of the sPPM model.
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Figure 15: Trace and ACF plots of parameters σ2 and µ of the Gaussian PPMx
model.
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Figure 16: Trace and ACF plots of parameters σ2 and τ2 of the Curve PPMx model.

20


	Introduction
	Dataset inspection and processing
	Models
	sPPM model
	DRPM model
	Gaussian PPMx model
	Curve PPMx model
	Linear Model

	Analysis of the results
	Morphological factors interpretation
	Anthropological factors interpretation
	ARI metric comparison

	Conclusions
	Further developments
	Visualization methods
	MCMC diagnostics

