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4.1 Examples

1) Statistical estimation

Random variable X with density f (x , θ), where θ 2 R
m is parameter vector, and

independent observations x1, . . . , xn.

Maximum likelihood: Estimates θ̂ of θ are derived by maximizing

L(θ) = f (x1, θ) f (x2, θ) . . . f (xn, θ)

Assumption: 9 θ for which all factors are positive.

Since ln(.) is monotonically increasing, θ̂ also maximizes

ln(L(θ)) =
nX

j=1

ln(f (xj , θ))

If f is differentiable w.r.t. θ at θ̂, necessary optimality conditions:
nX

j=1

r✓f (xj , θ̂)

f (xj , θ̂)
= 0
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For Guassian density

f (x) =
1

σ
p
2π

exp� (x � µ)2

2σ2

and θ = (µ,σ), we obtain

ln(L(θ)) = ln((
1

σ
p
2π

)n
nY

j=1

exp� (xj � µ)2

2σ2
) = �n

2
ln(2π)� n ln(σ)� 1

2σ2

nX

j=1

(xj � µ)2

Minimum is achieved in a stationary point:

∂[ln(L(θ))]

∂µ
=

1

σ2

nX

j=1

(xj � µ) = 0

and
∂[ln(L(θ))]

∂σ
= � n

σ
+

1

σ3

nX

j=1

(xj � µ)2 = 0

Thus

µ̂ =
1

n

nX

j=1

xj σ̂ =

v
u
u
t

1

n

nX

j=1

(xj � µ̂)2
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2) Training multilayer neural networks

Supervised learning:

Given a training set T = {(x1
, y 1), . . . , (xp

, yp)} where y k 2 [0, 1]nout desiderd output for

xk 2 R
nin , construct a model that maps xk ’s into y k ’s as well as possible.

Multilayer networks:

L layers with nl units in layer l , n1 = nin and nL = nout .

First layer of inputs x1, . . . , xn1 , other layers with activation units.

Illustration:

Output of unit j of layer l :

z
l
j = φ(

nl−1X

i=1

w
l
ijz

l�1
i � w

l
0j)

where weights wij to be determined and φ : R ! R is sigmoid φ(t) = 1
1+e−t .
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A multilayer network defnines a mapping h(w , .) from R
n1 to R

nL parametrized by
w = {w l

ij : l = 1, . . . , L; i = 1, . . . , nl�1; j = 1, . . . , nl}.

Training problem: Given T = {(x1
, y 1), . . . , (xp

, yp)}, determine values of w
which approximate as well as possible the mapping underlying T .

In general one minimizes

1

2

pX

k=1

(ky k � h(w , x
k)k2)

challenging (non convex)

Example 1.5.3 of D. Bertsekas, Nonlinear Programming, Athena Scientic 1999.
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4.2 Optimality conditions

Generic problem:
min
x2S

f (x)

where S ✓ R
n, f : S ! R and f 2 C1

or C2.

Unconstrained case: S = R
n

Definition: d 2 R
n is a feasible direction at x if

9 α > 0 such that x + αd 2 S 8α 2 [0,α] (1)

Illustrations:

If x 2 int(S), all d 2 R
n) are feasible.
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First order necessary local optimality conditions:

If f 2 C1 on S and x is a local minimum of f over S , then for any feasible direction
d 2 R

n at x
rt

f (x)d � 0,

namely all feasible directions are ascent directions.

Proof:
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Example: minx1, x2�0 f (x1, x2) = x21 � x1 + x2 + x1x2

0.5 1 1.5 2

0.8

1.6

2.4

3.2

4

x⇤ = ( 1
2
0)t is a global minimum because rt f (x⇤)d � 0 for all feasible directions d at x⇤, even

if rt f (x⇤) = (0 3
2
) 6= 0.
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Second order necessary local optimality conditions:

If f 2 C2 on S and x is a local minimum of f over S then

i) rt f (x)d � 0 8d 2 R
n feasible direction at x ,

ii) if rt f (x)d = 0 then d tr2f (x)d � 0.

Proof:

Similarly for (ii). Suppose rt f (x)d = 0, then

φ(α) = φ(0) + αφ0(0)
| {z }

0

+
1

2
α2φ00(0) + o(α2).
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Corollary: (Unconstrained case)

If f 2 C2 on S and x 2 int(S) is a local minimum of f over S , then

1 rf (x) = 0 (stationarity condition)

2 r2f (x) is positive semidefinite.

Proof:

Types of candidate points: local minima, local maxima and saddle points.

Above optimality conditions are not sufficient (f (x) = x3 and x = 0 not a local min).
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Example: minx1, x2�0 f (x1, x2) = x31 � x21 x2 + 2x22

1 2 3 4 5 6 7

5

10
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Sufficient local optimality conditions:

If f 2 C2 on S and x 2 int(S) such that rf (x) = 0 and r2f (x) is positive definite, then
x is a strict local minimum of f over S , namely

f (x) > f (x) 8x 2 N✏(x) \ S .

Proof:

Let d 2 B✏(0) be any feasible direction such that x + d 2 S \ B✏(x).

Then

f (x + d) = f (x) +rt f (x)
| {z }

0

d +
1

2
d tr2f (x)d + o(kdk2)

Since this holds 8d 2 R
n such that x + d 2 S \ B✏(x), f is locally strictly convex.
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Convex problems

min
x2C✓Rn

f (x) where C ✓ R
n convex and f : C ! R convex

Every local minimum is a global minimum.

Necessary and sufficient (NS) conditions:

Let f be convex and C1 on C ✓ R
n convex. x⇤ is a global minimum of f on C if and

only if
rt

f (x⇤)(y � x
⇤) � 0 8y 2 C .

Proof:
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Recall: Given any C ✓ Rn convex, x 2 C is an extreme point of C if it cannot be

expressed as a convex combination of two different points of C .

Property: (maximization of convex functions)

Let f be convex defined on C convex, bounded and closed. If f has a (finite) maximum

over C , then 9 an optimal extreme point of C .

Illustrations:

Special case: Linear programming
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4.3 Iterative methods and convergence

Generic Nonlinear Optimization (N.O.) problem:

min f (x)

s.t. gi (x)  0 1  i  m

x 2 S ✓ R
n

If X = {x 2 S : gi (x)  0, 1  i  m} ⇢ R
n then constrained problem.

Difficulty depends on f and X . Usually f and gi are at least continuously differentiable.

In some cases (e.g., LP and combinatorial optimization) an optimal solution can be found in a
finite number of elementary operations.

Efficiency depends on how this number grows with the instance size (polynomial vs exponential).
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Most N.O. methods are iterative

- start from x0 2 X

- generate a sequence {xk}k�0 that “converges” to a point of Ω = {“desired solutions”}.

Different meanings of “converge” and “desired solutions”:

• {xk}k�0 converges to a point of Ω

or 9 a limit point of {xk}k�0 which belongs to Ω (a good estimate)

• Ω = set of global optima

or Ω = set of candidate points satisfying 1st/2nd order necessary optimality conditions

(e.g. Ω = {x 2 R
n : rf (x) = 0} if X = R

n).

Often but not always descent methods: f (xk+1) < f (xk ) for each k
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Interested in robust and efficient methods.

1) Robustness associated to global convergence

Definition: An algorithm is globally (locally) convergent if {xk}k�0 satisfies one of
previous properties for any x0 2 X (only for x0 in a neighborhood of an x⇤ 2 Ω).

2) Efficiency characterized by convergence speed

Assume that limk!1 xk = x⇤ where x⇤ 2 Ω

Definitions: {xk}k�0 converges to x⇤ with order p � 1 if 9 r > 0 and k0 2 N such that

kxk+1 � x
⇤k  r kxk � x

⇤kp 8k � k0.

Largest p is the order of convergence and smallest r > 0 is the rate.

If p = 1 and r < 1 linear convergence, if p = 1 and r � 1 sublinear convergence.

N.B.: If p = 1 the distance w.r.t. x⇤ decreases at each iteration by a factor r .
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Example: 1 + 1
k
! 1 with r = 1 and 1 + 1

2k
! 1 with r = 1

2

Definition: The convergence is superlinear if there exists {rk}k�0 with limk!1 rk = 0
such that

kxk+1 � x
⇤k  rk kxk � x

⇤k 8k � k0.

Example: 1 + 1
kk

Definition: If p = 2 (and r not necessarily < 1), the convergence is quadratic.

Example: 1 + 1

22
k
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4.4 Line search methods

Unconstrained optimization problem:

min
x2Rn

f (x)

with f : Rn ! R of class C1 or C2 and bounded below.

Iterative methods: start from x0 2 R
n and generate {xk}k�0 “converging” to an x 2 Ω.

See Chap. 3 of J. Noceal, S. Wright, Numerical Optimization, Springer 1999.
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1) General scheme

Select x0 and ε > 0, set k := 0

Repeat

Choose search direction dk 2 R
n

Determine step length αk > 0 along dk s.t. minα�0 φ(α) = f (xk + αdk)

Set xk+1 := xk + αkdk and k := k + 1

Until termination criterion is satisfied

Termination criterion: krf (xk)k < ε or |f (xk)� f (xk+1)| < ε or kxk+1 � xkk < ε

Often approximate αk (also f (xk+1) < f (xk ) 8k � 0).

Flexibility in choice of dk and αk , efficiency depends on both.
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2) Search directions

In many line search methods, i.e., iterative methods based on search directions,

dk = �Dkrf (xk)

with positive definite n ⇥ n matrix Dk .

dk is a descent direction because

rt
f (xk)dk = �rt

f (xk)Dkrf (xk) < 0.
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Example 1: Gradient method

Given f 2 C1, consider linear approximation of f (xk + d) at xk

lk(d) := f (xk) +rt
f (xk)d

and choose dk 2 R
n minimizing lk(d) over sphere of radius krf (xk)k:

min rt f (xk)d (1)

s.t. kdk = krf (xk)k.

Since rt f (xk )d = krf (xk )kkdk cos(θ), (1) is minimized when cos(θ) = �1, namely θ = π.

Steepest descent direction:
dk = �rf (xk)

where Dk = In.

Clearly dk is a descent direction if rf (xk ) 6= 0.
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Example 2: Newton method

Given f 2 C2 and H(xk) = r2f (xk).

Consider quadratic approximation of f (xk + d) at xk

qk(d) := f (xk) +rt
f (xk)d +

1

2
d
t
H(xk)d

and choose dk 2 R
n and αk leading to a stationary point of qk(d).

Since rd qk(d) = 0 implies rt f (xk) + d tH(xk) = 0, if H�1(xk) exists then

Newton direction:
dk = �H

�1(xk)rf (xk),

where Dk = H�1(xk).

If H(xk ) is p.d. and rf (xk ) 6= 0, dk is a descent direction.

If H(xk ) is not p.d., dk may not be defined (6 9 H�1(xk )) or may be an ascent direction.
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3) Step length

To guarantee global convergence, an approximate solution αk of line search:

min
α�0

φ(α) = f (xk + αdk).

is sufficient.

Different methods to generate αk and stop when appropriate conditions are satisfied
(simple, after a few iterations).

f (xk + αkdk) < f (xk) does not suffice.

Basic principles:

- α must not be too small (to avoid premature convergence)

- α must not be too large (to avoid oscillations)
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Wolfe conditions:

Sufficient reduction:

φ(α)  φ(0) + c1αφ
0(0) con c1 2 [0, 1]

which is equivalent to

f (xk + αdk)  f (xk) + c1αr
t
f (xk)dk (Armijo criterion)

φ0(0) < 0 since dk is a descent direction, c1  1/2 so that it is satisfied by the minimum of a

quadratic convex φ(α) (exercise set n.6).

Illustration:
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To avoid too small steps also condition:

φ
0(α) � c2φ

0(0) con c2 2 (c1, 1)

which is equivalent to
rt

f (xk + αdk)dk � c2r
t
f (xk)dk .

In general c2 = 0.9 for (quasi)-Newton and c2 = 0.1 for non-linear conjugate gradient.

Weak Wolfe conditions:
φ(α)  φ(0) + c1αφ

0(0) (2)

φ
0(α) � c2φ

0(0) (3)

with 0 < c1 < c2 < 1.

See Chap. 3 of J. Noceal, S. Wright, Numerical Optimization, Springer 1999.
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Strong Wolfe conditions:

φ(α)  φ(0) + c1αφ
0(0) (4)

|φ0(α)|  c2|φ
0(0)| (5)

with 0 < c1 < c2 < 1.

Exclude values of α with φ0(α) too positive, far from stationary points of φ.

Conditions are invariant w.r.t. affine transformation of the variables.

Proposition:

If f : Rn ! R is C1 and dk descent direction at xk such that f is bounded below along
{xk + αdk : α > 0}. Then if 0 < c1 < c2 < 1 there exist intervals of step lengths
satisfying the Wolfe conditions (weak and strong).

Simple consequence of the mean value theorem.
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Metods for 1-D search

Many methods (with/without derivatives) to determine an approximate solution αk of

min
α�0

φ(α) = f (xk + αdk)

satisfying appropriate conditions (e.g. Wolfe) which guarantee global convergence.

In general, two phases:

- determine [αmin,αmax ] containing “acceptable” step lengths (“bracketing phase”),

- select a good value α within [αmin,αmax ] via bisection or interpolation.
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Bisection

φ 2 C1, φ0(0) < 0 since dk descent direction and 9 α such that φ0(α) > 0 for α � α.

Start from [αmin,αmax ] with φ0(αmin) < 0 and φ0(αmax) > 0 and iteratively reduce it.

Iteration: set α̃ = 1
2
(αmin + αmax)

if φ0(α̃) > 0 then αmax := α̃

if φ0(α̃) < 0 then αmin := α̃

Linear convergence with rate 1/2

To find initial [αmin,αmax ]:

1) αmin := 0 e s := s0

2) compute φ0(s)

if φ0(s) < 0 then αmin := s, s := 2s, goto 2)

if φ0(s) > 0 then αmax := s, stop
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Adaptation to determine αk satisfying Wolfe conditions.

Procedure:

i) select α > 0 and set αmin = αmax = 0

ii) if α satisfies Wolfe (2) then goto iii)

else αmax := α, α := αmin+αmax

2
, goto ii)

iii) if α satisfies Wolfe (3) then αk = α, stop

else αmin := α

α :=

(

2αmin if αmax = 0
1
2
(αmin + αmax) if αmax > 0

goto ii)

Proposition: If f 2 C1 is bounded below along ray {xk + αdk : α � 0}, the procedure
stops after a finite number of iterations and yields αk satisfying Wolfe conditions.
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4) Global convergence of line search methods

Suitable assumptions on αk and dk can guarantee global convergence.

Key aspect: angle θk between dk and �rf (xk)

cos(θk) = �
rt f (xk)dk

krf (xk)kkdkk

General result showing how far dk can deviate from �rf (xk) and still give rise to
globally convergent iterations.

For a proof assuming weak Wolfe conditions, see J. Noceal, S. Wright, Numerical Optimization,

Springer 1999, p. 43-44.
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Theorem: (Zoutendijk)

Consider any line search method iteration with descent dk and αk satisfying Wolfe
conditions. Suppose f is bounded below on R

n, f 2 C1 on open set N containing
L0 = {x 2 R

n : f (x)  f (x0)} and rf (x) is Lipschitz continuous on N, i.e., 9 L > 0
such that

krf (x)�rf (x)k  Lkx � xk 8x , x 2 N.

Then
X

k�0

cos2(θk)krf (xk)k
2 < +1. (6)

(6) implies cos2(θk )krf (xk )k
2 ! 0 when k ! 1.

If cos θk � δ > 0 8k � 0 then (6) implies that limk!1 krf (xk )k = 0 for any x0.

According to (6), limk!1 krf (xk )k = 0 provided that dk s are never too close to orthogonality

with �rf (xk ).

Consequence: The gradient method (cos θk = 1) satisfying Wolfe conditions is globally
convergent.
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If Dk symmetric and p.d. 8k � 0 and 9 constant M such that

kDkkkD
�1
k k  M 8k � 0

(bounded condition number), it can be verified that

cos θk � 1/M.

In such cases Newton and quasi-Newton methods are globally convergent.
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4.5 Gradient method

Given f : Rn ! R with f 2 C1, look for a stationary point.

Gradient method with exact 1-D search:

Choose x0, set k := 0

Iteration k:

dk := �rf (xk)

Determine αk > 0 such that minα�0 φ(α) = f (xk + αdk)

xk+1 := xk + αkdk

k := k + 1

Termination criteria: krf (xk)k < ε or |f (xk)� f (xk+1)| < ε or kxk+1 � xkk < ε.

Property: If 1-D search is exact, the successive directions are orthogonal.
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Example: zig-zag trajectory, very slow convergence

We first consider the case of quadratic strictly convex functions.

Any C2 function can be well approximated around any local/global minimum by such a function.
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Quadratic strictly convex functions:

f (x) =
1

2
x
t
Qx � b

t
x with Q symmetric and p.d.

Global minimum is unique solution of Qx = b (rf (x) = 0) and αk can be determined explicitly:

φ(α) = f (xk � αrf (xk )) =
1

2
(xk � αrf (xk ))

tQ(xk � αrf (xk ))� bt(xk � αrf (xk ))
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Convergence analysis

Often consider convergence rate of f (xk ) ! f (x⇤) instead of kxk � x⇤k ! 0 when k ! 1.

Proposition: If H(x⇤) is p.d., xk converges (super)linearly at x⇤ w.r.t.
|f (xk)� f (x⇤)| if and only if it converges in the same way w.r.t. kxk � x⇤k.

Indeed

f (x) ⇡ f (x⇤) +
1

2
(x � x⇤)tH(x⇤)(x � x⇤)

and 9 a neighborhood N(x⇤) such that

λ
0

1kx � x⇤k2  |f (x)� f (x⇤)|  λ
0

nkx � x⇤k2 8x 2 N(x⇤)

with λ
0

1 = λ1 � ε > 0 and λ
0

n = λn + ε, where ε > 0 and 0 < λ1  . . .  λn are the eigenvalues

of H(x⇤).

N.B.: This equivalence does not hold in general (e.g., functions non everywhere C1)
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Quadratic strictly convex functions:

f (x) = 1
2
x tQx � btx and weighted norm kxk2Q := x tQx .

Since Qx⇤ = b

1
2
kx � x⇤k2

Q
= 1

2
(x � x⇤)tQ(x � x⇤) = 1

2
x tQx � x⇤tQx + 1

2
x⇤tQx⇤ = ... = f (x)� f (x⇤).

Theorem: If gradient method with exact 1-D search is applied to any quadratic strictly
convex f 2 C2, for any x0 we have limk!1 xk = x⇤ and

kxk+1 � x
⇤k2Q  (

λn � λ1

λn + λ1
)2 kxk � x

⇤k2Q , (1)

where 0 < λ1  . . .  λn are the eigenvalues of Q.

Proof sketch:

Zoutendijk’s theorem implies global convergence.

Since exact 1-D search, easy to verify that

kxk+1 � x⇤k2Q = (1�
g t
k
g
k

(g t
k
Qg

k
)(g t

k
Q�1g

k
)
) kxk � x⇤k2Q ,

where g
k
= Qxk � b.
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Then just apply Kantorovich inequality:

If Q p.d. (with λ1 and λn smallest and largest eigenvalues), for each x 6= 0 we have

(x tx)2

(x tQx)(x tQ�1x)
�

4λnλ1

(λn + λ1)2
.

If λ1 = λn (Q = γI ), method ”converges” in one iteration.

Upper bound (1) is reached for some choices of x0 (Aikake).

Linear convergence whose rate depends on condition number κ = λn
λ1

of Q:

r = (
λn � λ1

λn + λ1
) = (

κ� 1

κ+ 1
)

the closer κ to 1 the smaller r ; if the spektrum of Q is very wide then κ � 1 and r ⇡ 1.
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Example:

min f (x1, x2) =
1
2
x21 + a

2
x22 with a � 1 and eigenvalues 1

2
and a

2

Some points of {xk} for a = 4 (top) and a = 16 (bottom), starting from x0 =

✓

a

1

◆

.
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Arbitrary nonlinear functions:

Theorem: If f 2 C2 and gradient method with exact 1-D search converges to x⇤ with
H(x⇤) p.d., then

f (xk+1)� f (x⇤)  (
λn � λ1

λn + λ1
)2 [f (xk)� f (x⇤)]

where 0 < λ1  . . .  λn are eigenvalues of H(x⇤).

We cannot expect better convergence with inexact (approximate) 1-D search.

αk minimizing φ(α) may not be the best choice, we could try to ”extract” 2nd order information
about f (x).

Example: for f (x) quadratic strictly convex, αk = 1/λk+1 lead to x⇤ in at most n iterations!
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4.6 Newton method

Let f 2 C2 and H(x) = r2f (x).

Consider quadratic approximation of f (x) at xk :

qk(x) := f (xk) +rt
f (xk)(x � xk) +

1

2
(x � xk)

t
H(xk)(x � xk)

and choose as xk+1 a stationary point of qk(x), namely

rf (xk) + H(xk)(xk+1 � xk) = 0.

If H(xk) is not singular, H
�1(xk) exists and

xk+1 := xk � H
�1(xk)rf (xk).

If H(xk ) is p.d., f 2 C2 implies that H�1(xk ) p.d. over N(xk ) and iteration is well defined,
otherwise dk may not be a descent direction.

In the ”pure” Newton method, αk = 1 for each k.

For f quadratic and strictly convex, global minimum in a single iteration.
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Property: Newton method is invariant w.r.t. affine and non singular coordinate changes
(see exercise set 6).

Observation: Newton method is not globally convergent, but very fast local convergence

if x0 is sufficiently close to a desired solution.

Example: minx2R f (x) = � exp(�x2) with global minimum x⇤ = 0 and f 0(x) = 2x exp(�x2)

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2
3

x

f(x)

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2
3

x

f’(x)

2

2

x0 x1 x2 ...
x0

x1

x2

If �0.2  x0  0.2, {xk}k2N converges at x⇤ = 0. If x0 > 1, {xk}k2N diverges.
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Alternative interpretation of Newton method (1-D case):

f (x) 2 C2 and look for x⇤ such that f 0(x) = 0.

Method of tangents (Newton-Raphson) to determine the zeros of a 1-D function:

At iteration k, f 0(x) is approximated with the tangent at xk

z = f 0(xk ) + f 00(xk )(x � xk )

xk+1 corresponds to the intersection with the x-axis: xk+1 = xk �
f 0(xk )
f 00(xk )

n-D case: Determine a stationary point of f (x) by solving non linear system rf (x) = 0 with

”Newton-Raphson” method.
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Theorem: (proof see Nocedal and Wright, 1999 edition, p. 52-53)

Suppose f 2 C2 and x⇤ such that rf (x⇤) = 0 and H(x⇤) p.d. and 9 L > 0 such that

kH(x)� H(y)k  Lkx � yk 8x , y 2 N(x⇤)

then, for x0 sufficiently close to local minimum x⇤,

i) {xk} ! x⇤ with a quadratic convergence order,

ii) {krf (xk)k} ! 0 quadratically when k ! 1.

Disadvantages:

If H(xk) is singular the step is not defined.

If H�1(xk) is not p.d., Newton direction may not be descent direction.

Even for a descent direction αk = 1 may increase the value of f .

Computation of H�1(xk) at each iteration ( O(n3) complexity ).

Only locally convergent: if x0 is not close enough to x⇤, {xk}k�0 may not converge.

Since {xk}k�0 converges from any x0 sufficiently close to any stationary point

with non singular r2f (x), it may converge to local maxima.
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For a comparison between gradient and Newton methods, see Nocedal and Wright, Numerical
Optimization, Edition 1999, p. 199.

Rosenbrock function
f (x) = 100(x2 � x21 )

2 + (1� x1)
2.

quadratic and nonconvex.

Fourth computer laboratory: explore the considerable difference in convergence speed
between various line search methods.
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Modifications and extensions

1) If αk = 1 does not satisfy Wolfe (alternative) conditions then inexact 1-D search.

2) To guarantee global convergence

dk = �Dkrf (xk)

with Dk 6= [r2f (xk)]
�1. If Dk is symmetric and p.d., dk is a descent direction.

Trade-off between steepest descent and Newton directions:

Dk := (εk I +r2
f (xk))

�1

where εk > 0 are smallest values such that eigenvalues of (εk I +r2f (xk)) are � δ > 0.
Such εk making Dk p.d. always exist.

Coincides with “pure” Newton method when getting closer to a local minimum.
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3) Trust region methods

Idea: simultaneously determine dk and αk by minimizing local quadratic approximation
qk(x) at xk over a trust region on which qk(x) provides a good approximation of f (x).

Example: Bk = {x 2 R
n : kx � xkk  ∆k}

Illustration:

In general, trust region subproblem minx2Bk
qk (x) can be solved in closed form or it has low

computational requirements.

The trust region size (e.g.∆k) is updated adaptively during the iterations based on an
estimate of the quality (e.g. max |f (x)� qk(x)|) of the quadratic approximation over it.
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4.7 Conjugate direction methods

Aim: faster convergence than gradient method and lower computational load than
Newton method.

First consider quadratic strictly convex functions

min
x2Rn

q(x) =
1

2
x
t
Qx � b

t
x

with Q n ⇥ n symmetric and p.d.

Definition: Given n ⇥ n and symmetric Q, two nonzero d1, d2 2 R
n are Q-conjugate

if d t
1Qd2 = 0.

Example:
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Proposition: If Q p.d. and nonzero d0, . . . , dk are mutually Q-conjugate, then
d0, . . . , dk are linearly independent.

Proof:

Geometric/algebraic interpretation

If Q is diagonal, q(x) can be minimized via 1-D search along coordinate directions.

Nocedal and Wright, Numerical Optimization, Edition 1999, p. 104-105.
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If Q is not diagonal and d0, . . . , dn�1 are n mutually Q-conjugate, linear variable transformation

x =

n�1
X

i=0

αid i

leads to

q̃(α) =
1

2
(

n�1
X

i=0

αid i )
tQ(

n�1
X

i=0

αid i )� bt(

n�1
X

i=0

αid i ) =

n�1
X

i=0

[
1

2
α2
i d

t
iQd i � αib

td i ] =

n�1
X

i=0

q̃i (αi )

where each q̃i is quadratic with single variable αi .

Minimization of q(x) over Rn reduces to at most n 1-D search problems.

Bazaraa, Sherali, Shetty, Nonlinear Programming – Theory and Algorithms, third edition, Wiley

Interscience, 2006, p. 316
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Theorem: (Conjugate directions)

Let {d i}
n�1
i=0 be n nonzero mutually Q-conjugate directions.

For any x0 2 R
n, {xk}k�0 generated according to

xk+1 = xk + αkdk (1)

with

αk = �
g t

k
dk

d t
kQdk

and g
k
:= rq(xk) = Qxk � b

terminates to the (unique) global optimal solution x⇤ of q(x) in at most n iterations,
that is

xn = x0 +

n�1X

k=0

αkdk = x
⇤
.
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Proof.:

Since dk ’s are linearly independent, 9 αk ’s such that

x⇤ � x0 = α0d0 + . . .+ αn�1dn�1.
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Property: (Expanding subspace)

Let d0, . . . , dn�1 be nonzero mutually Q-conjugate vectors. Then, for any x0 2 R
n,

{xk}k�0 generated according to

xk+1 = xk + αkdk with αk = �
g t

k
dk

d t
kQdk

is such that

xk = x0 +

k�1X

j=0

αjd j

minimizes q(x) = 1
2
x tQx � btx not only on the line

{ x 2 R
n : x = xk�1 + αdk�1, α 2 R }

but also on the affine subspace Vk = { x 2 R
n : x = x0 + span{d0, . . . , dk�1} }.

In particular, xn is the global optimum of q(x) on R
n.

Proof:
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Illustration:

Consequence: In conjugate direction method the gradients g
k
satisfy g t

k
d i = 0

for all i with 1  i < k.
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4.7.1 Conjugate gradient method for quadratic convex functions

Initialization: Arbitrary x0, g
0
= rq(x0) = Qx0 � b, d0 := �g

0
and k = 0

Iteration: xk+1 := xk + αkdk with αk = �
g t
k
dk

dt
k
Qdk

( exact 1-D search )

dk+1 := �g
k+1

+ βkdk with βk =
g t
k+1

Qdk

dt
k
Qdk

.

Observations:

αk = �
g t
k
dk

dkQdk
minimizes q(x) along line through xk generated by dk

dq(xk + αdk )

dα
= d t

kQ(xk+αdk )�btdk = d t
kQxk + αd t

kQdk � (�rtq(xk ) + x tkQ)dk = 0

Limited computational requirements, no matrix inversions are needed.

To show that global optimal solution is found after at most n iterations, just verify that
directions are mutually Q-conjugated.
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Proposition:

At each iteration k in which the optimum solution of q(x) has not yet been found
(g

i
6= 0 for i = 0, . . . , k)

i) d0, . . . , dk+1 generated are mutually Q-conjugate

ii) αk =
g t
k
g
k

dt
k
Qdk

6= 0

iii) βk =
g t
k+1

(g
k+1

�g
k
)

g t
k
g
k

=
g t
k+1

g
k+1

g t
k
g
k

Advantages: No need for matrix inversions, limited computational requirements.

Disadvantages:

- Exact or at least accurate 1-D search otherwise the directions may loose Q-conjugacy.

- The method is not invariant w.r.t. affine transformations of the coordinates.

Fourth computer laboratory: compare the convergence speed of gradient, conjugate
gradient and Newton methods.
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4.7.2 Conjugate direction methods

For arbitrary functions with large n, approximate αk and βk must not depend on Hessian.

Arbitrary x0 and d0 = �rf (x0)

xk+1 := xk + αkdk with inexact 1-D search and dk+1 = �rf (xk+1) + βkdk .

Most popular formulae for βk :

βFR
k =

krf (xk+1)k
2

krf (xk )k
2 Fletcher-Reeves

βPR
k =

rt f (xk+1)(rf (xk+1)�rf (xk ))

krf (xk )k
2 Polak-Ribière

Observation: dk is a descent direction if exact 1-D search

rt f (xk )dk = �krt f (xk )k
2 + βk�1r

t f (xk )dk�1 = �krt f (xk )k
2 < 0.

For quadratic functions the method coincides with CG method.
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For nonquadratic functions, Polak-Ribière version turns out to be more efficient than
Fletcher-Reeves one.

Observations

At each iteration it suffices to store xk , rf (xk ), rf (xk+1) and dk .

Version with “restart” in which βk = 0 every m iterations (m << n) is globally convergent.

When βk = 0, dk+1 = �rf (xk+1) and all previous information is lost.

For large n, we hope to find a solution way before n iterations!
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4.7.3 Convergence

Convergence for quadratic functions

Let q(x) = 1
2
x tQx � btx be quadratic strictly convex with λ1  . . .  λn the eigenvalues

of Q, then

kxk+1 � x
⇤k2Q  (

λn�k � λ1

λn�k + λ1
)2 kx0 � x

⇤k2Q

where kx � x⇤k2Q = (x t � x⇤)tQ(x � x⇤) = 2(q(x)� q(x⇤)).

If m large eigenvalues and other n �m “concentrated” around a λ̃, after m + 1 iterations

kxm+1 � x⇤kQ ⇡ εkx0 � x⇤kQ with ε = (λn�m � λ1)/2λ̃, that is, we have an accurate

estimate of the solution after m + 1 iterations.

Illustration:
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Example:
min f (x1, x2) =

1
2
x21 + a

2
x22 with a � 1 and hence eigenvalues 1

2
and a

2

The sequence {xk} for a = 4 (top) and a = 16 (bottom), starting from x0 =

✓

a

1

◆

.
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Convergence for arbitrary functions

1) If f 2 C2 and {xk}k�0 generated by the F-R method with exact 1-D search converges
to x⇤ with p.d. H(x⇤), then

lim
k!1

kxk+n � x⇤k

kxk � x⇤k
= 0,

namely convergence is superlinear within n iterations.

Similar result also for inexact 1-D search.

2) Global convergence of F-R method even without “restart” (for P-R?).

Zoutendijk’s theorem implies:

For F-R method with inexact 1-D search satisfying strong Wolfe conditions with
0 < c1 < c2 < 1/2, we have

lim
k!1

inf krf (xk )k = 0.

A sub-sequence has krf (xk )k that converges to 0.
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4.7.4 Preconditioned conjugate gradient method

The conjugate gradient method (CG) can be accelerated by a variable change x = Sy ,
where S is n ⇥ n symmetric and non singular.

By applying CG to

h(y) = q(Sy) =
1

2
y
t
SQSy � b

t
Sy

we obtain
y
k+1

= y
k
+ αk d̃k

with αk determined by 1-D search, d̃0 = �rh(y
0
) and d̃k = �rh(y

k
) + βk�1d̃k�1 for

k = 1, . . . , n � 1 where

βk�1 =
rth(y

k
)rh(y

k
)

rth(y
k�1

)rh(y
k�1

)
.

Setting xk = Sy
k
, rh(y

k
) = Sg

k
, dk = Sd̃k , we obtain the equivalent preconditioned

conjugate gradient method:
xk+1 = xk + αkdk

with αk determined by 1-D search, d0 = �Sg
0
and

dk = �Sg
k
+ βk�1dk�1 for k = 1, . . . , n � 1
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where

βk�1 =
g t

k
S2g

k

g
k�1

S2g
k�1

.

Clearly when S = I it coincides with the standard CG method.

Since r2h(y) = SQS , d̃0, . . . , d̃n�1 are (SQS)-conjugate. Moreover dk = Sd̃k implies
that d0, . . . , dn�1 are Q-conjugate.

To achieve faster convergence, we look for S such that SQS has a smaller condition
number than Q or eigenvalues that are distributed into “groups”.

Recall: a good approximate solution can be found in a number of iterations not much
larger than the number of groups.
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4.8 Quasi-Newton methods

Instead of using/inverting r2f (xk), second order derivative information is extracted
from variations in rf (x).

Generate {Hk} of symmetric p.d. approximations of [r2f (xk)]
−1 and take

xk+1 = xk + αkdk with dk = �Hkrf (xk),

where αk > 0 minimizes f (x) along dk or satisfies some inexact 1-D search conditions.

Advantages w.r.t. Newton method:

since Hk ’s are symmetric and p.d., always well defined and descent direction,

only involves first order derivatives,

Hk is constructed iteratively, each iteration is O(n2).

Disadvantages w.r.t. conjugate direction methods: requires storing/handling matrices.
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Idea: Second order derivative information is extracted from rf (xk) and rf (xk+1).

Quadratic approximation of f (x) around xk :

f (xk + δ) ⇡ f (xk) + δ
trf (xk) +

1

2
δ
tr2

f (xk)δ.

Differentiating we obtain

rf (xk + δ) ⇡ rf (xk) +r2
f (xk)δ.

Substituting δ with δk and setting δk = xk+1 � xk and γ
k
= rf (xk+1)�rf (xk) we have

γ
k
⇡ r2

f (xk)δk , namely [r2
f (xk)]

−1
γ
k
⇡ δk .

Since δk and γ
k
can only be determined after 1-D search, we select Hk+1 symmetric and

p.d. such that
Hk+1γ

k
= δk (secant condition). (1)

Hk+1 is not univocally defined: n equations and n(n + 1)/2 degrees of freedom.
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Simple way is by successive updates:

Hk+1 = Hk + aku u
t (2)

where u ut symmetric matrix of rank 1 and ak proportionality coefficient.

To satisfy (1) we must have
Hkγ

k
+ aku u

t
γ
k
= δk

and hence u and (δk � Hkγ
k
) must be collinear.

Since ak accounts for proportionality, we can set u = δk � Hkγ
k
and hence aku

tγ
k
= 1.

Rank one update formula:

Hk+1 = Hk +
(δk � Hkγ

k
)(δk � Hkγ

k
)t

(δk � Hkγ
k
)tγ

k

(3)

Properties

1 For quadratic strictly convex functions, Hn = Q−1 in at most n iterations, even with
inexact 1-D search.

2 No guarantee that Hk is p.d.!
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Rank two updates

Hk+1 = Hk + aku u
t + bkv v

t (4)

are more interesting.

To satisfy (1) we have
Hkγ

k
+ aku u

t
γ
k
+ bkv v

t
γ
k
= δk

where u, v are not determined univocally.

Setting u = δk and v = Hkγ
k
, we obtain aku

tγk = 1 and bkv
tγk = �1

and hence the rank two update formula:

Hk+1 = Hk +
δkδ

t
k

δtkγk

�
Hkγ

k
γt

k
Hk

γt
k
Hkγ

k

Davidon-Fletcher-Powell (DFP) (5)
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Proposition: If
δ
t
kγk

> 0 8k (curvature condition),

the DFP method preserves the positive definiteness of Hk , i.e., if H0 is p.d. then Hk is
p.d. for all k � 1.

Proof:
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Fact: The curvature condition δtkγk
> 0 holds for every k � 0 provided that the 1-D

search satisfies (weak or strong) Wolfe conditions.

Proof*:

For quadratic strictly convex functions, γ
k
= Qδk implies δtkQδk = δtkγk

> 0 because Q is p.d.

For arbitrary functions:

Weak Wolfe conditions:

f (xk + αkdk )  f (xk ) + c1αkr
t f (xk )dk (Armijo criterion) (6)

rt f (xk + αkdk )dk � c2r
t f (xk )dk (7)

with 0 < c1 < c2 < 1.

Since δk = αkdk , (7) implies

rt f (xk+1)δk � c2r
t f (xk )δk ,

which in turn implies

γt

k
δk � (c2 � 1)αkr

t f (xk )dk

with (c2 � 1) < 0, αk > 0, and rt f (xk )dk < 0 because dk is a descent direction.
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Properties

For quadratic strictly convex functions, DFP method with exact 1-D search:

1 terminates in at most n iterations with Hn = Q−1,

2 generates Q–conjugate directions (from H0 = I it generates CG directions),

3 secant condition is hereditary, i.e., Hiγ
j
= δj for j = 0, . . . , i � 1.

For arbitrary functions:

4 if δtkγk
> 0 (curvature condition), all Hk are p.d. if H0 is p.d. (hence descent

method),

5 each iteration is O(n2),

6 superlinear convergence rate (in general only local),

7 if f (x) convex, DFP method with exact 1-D search is globally convergent.
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BFGS method

We can construct an approximation of r2f (xk) rather than of [r2f (xk)]
−1.

Since we aim at Bk ⇡ r2f (xk), Bk must satisfy Bk+1δk = γ
k
.

Taking Bk+1 = Bk + aku u
t + bkv v t , with similar manipulations, we have:

Bk+1 = Bk +
γ
k
γt

k

γt
k
δk

�
Bkδkδ

t
kBk

δtkBkδk
(8)

which should be inverted to obtain Hk+1.

By applying twice Sherman–Morrison indentity

(A+ a bt)−1 = A−1 �
A−1a btA−1

1 + btA−1a
, A 2 R

n×n non singular, a, b 2 R
n, denominator 6= 0,

we obtain the Broyden Fletcher Goldfarb and Shanno (BFGS) update formula:

Hk+1 = Hk +

 

1 +
γt

k
Hkγ

k

δtkγk

!

δkδ
t
k

δtkγk

�
Hkγ

k
δtk + δkγ

t
kHk

δtkγk

(9)

Indeed Bk+1Hk+1 = I if BkHk = I .
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The BFGS method has same properties 1 to 5 as DFP method.

In pratice, it is more robust w.r.t. to rounding errors and inexact 1-D search.

BFGS and DFP are two extreme cases of unique Broyden family of update formulae:

Hk+1 = (1� φ)HDFP
k+1 + φH

BFGS
k+1

with 0  φ  1.

Properties: (Broyden family)

Hk+1 satisfies secant condition and is p.d. if δtkγk
> 0.

Methods invariant w.r.t. affine variable transformations.

If f (x) quadratic strictly convex, methods with exact 1-D search find x∗ in at most
n iterations (Hn = Q−1) and the generated directions are Q-conjugate.

Quasi-Newton methods are much less ”sensitive” to inexact 1-D search than CD
ones.
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Convergence of quasi-Newton methods

Complex analysis because approximation of Hessian (inverse) is updated at each
iteration.

Convergence speed for {Bk} or {Hk} with inexact 1-D search (Wolfe cond.) where
αk = 1 is tried first:

Theorem: (Dennis and Moré)

Consider f 2 C3 and quasi-Newton method with Bk p.d. and αk = 1 for each k.
If limk→∞ xk = x∗ with rf (x∗) = 0 and r2f (x∗) is p.d., {xk} converges superlinearly if
and only if

lim
k→∞

k(Bk �r2f (x∗))dkk

kdkk
= 0. (10)

If quasi-Newton dk approximates Newton direction well enough, αk = 1 satisfies Wolfe cond.
when xk ! x∗.

Observation: No need that Bk ! r2f (x∗), it suffices that Bk ’s become increasingly accurate

approximations of r2f (x∗) along dk !
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The necessary and sufficient condition (10) is satisfied by quasi-Newton methods such as
BFGS and DFP.

Comparing the convergence rates of gradient, Newton and BFGS methods:

for Rosenbrock’s function, see p. 199 (Chap. 8) of J. Nocedal, S. Wright, Numerical

Optimization, Springer, 1999.

Global convergence:

Under some assumptions, can guarantee global convergence for arbitrary functions with
inexact 1-D search.

In general ”classical” globalization techniques (restart or trust region) are not adopted
because no examples of non convergence are known.

Widely used: quasi-Newton methods with BFGS and DFP updates and 1-D search procedures

satisfying Wolfe conditions.
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5.1 Example: Design linear classifiers and train SVMs

Support Vector Machines (SVMs) for binary classification.

Training set T = { (x i
, y i ) : x i 2 R

n
, y i 2 {�1, 1}, i = 1, . . . , p }.

Linear classifier: Suppose T is linearly separable

hyperplane H(w , b) = {x 2 R
n : w tx = b} separates the points of the two classes if

⇢

w tx i � b � 1 for y i = +1
w tx i � b  �1 for y i = �1.

H not unique.
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If T is linearly separable, H with largest margin (min distance from H to any x i ) is the
most robust w.r.t. noise.

Since width = 2
kwk

, hard-margin linear SVM training:

min
w2Rn

,b2R

1
2
kwk2

s.t. y i (w tx i � b)� 1 � 0 i = 1, . . . , p.

strictly convex function and possibly huge number of linear constraints.

Remark: H with maximum margin is completely determined by the support vectors

(closest x i s to H).
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Decision function: h(w , b, x) = w tx � b.

Extensions:

1) Soft margin for nonlinearly separable T (not convex)

2) Nonlinear classifiers by applying kernels.

See Computer Lab 5.

For other applications see e.g. Chap. 6-8 of S. Boyd and L. Vandenberghe, Convex
Optimization, Cambridge Press, 2004.

Edoardo Amaldi (PoliMI) Optimization Academic year 2023-24 4 / 1



5.2 Necessary optimality conditions

Consider

min f (x)

s.t. gi (x)  0 i 2 I = {1, ...,m} (1)

x 2 R
n

where f , gi 2 C 1.

Assumption: Feasible region S = { x 2 R
n : gi (x)  0, 8i 2 I } 6= ; but its interior

can be empty.
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Definitions: For each x 2 S

D(x) = { d 2 R
n : 9 α > 0 such that x + αd 2 S , 8α 2 [0,α] }

cone of the feasible directions.

I (x) = { i 2 I : gi (x) = 0 } ✓ I set of indices of the active constraints.

D(x) =
�

d 2 R
n : rtgi (x)d  0, 8i 2 I (x)

 

cone of the directions constrained by the gradients of the active constraints.
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Property: D(x) ✓ D(x) for all x 2 S .

Proof:

Given any d 2 D(x), for sufficiently small α we have
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Not all d 2 D(x) are feasible directions.

Example:

g1(x) = �x1  0

g2(x) = �x2  0

g3(x) = �(1� x1)
3 + x2  0

At x =

✓

1
0

◆

we have D(x) = { (α, 0) : α < 0 }
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Theorem: (Extension of first order necessary optimality conditions)

If f 2 C 1 on S and x 2 S is a local minimum of f on S , then

rf
t(x)d � 0 8d 2 D(x),

that is, all feasible directions are ascent directions.

Proof:

The result holds 8d 2 D(x).

For every d 2 D(x), 9 a sequence {dk} with dk 2 D(x) such that limk!1 dk = d .

Since rf t(x)dk � 0, 8k, then limk!1 rf t(x)dk = rf t(x)d � 0.

But D(x) is difficult to characterize.
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Since D(x) is well characterized, we introduce further conditions.

Definition: (Constraint Qualification CQ – Zangwill)

The constraint qualification assumption holds at x 2 S if D(x) = D(x)
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Theorem: (Karush-Kuhn-Tucker necessary optimality conditions)

Suppose f , gi 2 C 1 and CQ assumption holds at x 2 {x 2 R
n : gi (x)  0, 8i 2 I}.

If x is a local minimum of f over S then 9 u1, . . . , um � 0 (KKT-multipliers) such that:

rf (x) +
X

i2I (x)

uirgi (x) = 0 ⌘

⇢

rf (x) +
Pm

i=1 uirgi (x) = 0
uigi (x) = 0 8i 2 I

x must also satisfy all the constraints gi (x)  0, 8i 2 I .

Geometric interpretation:
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Proof:

Assuming CQ holds at x , we have D(x) = D(x).

NC for x to be a local minimum of f over S is

rt f (x)d � 0, 8d such that rtgi (x)d  0 8i 2 I (x). (2)

Farkas Lemma:
⇢

Au = b

u � 0
has a solution ,

⇢

btd � 0
8d such that d tA � 0
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Example 1:
min f (x) = x1 + x2
s.t. g1(x) = x21 + x22  2

g2(x) = �x2  0

KKT conditions:
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✓

1
1

◆

+ u1

✓

2x1
2x2

◆

+ u2

✓

0
�1

◆

=

✓

0
0

◆

u1(x
2
1 + x22 � 2) = 0

u2(�x2) = 0
x21 + x22  2
�x2  0
u1 � 0, u2 � 0

Four cases:
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✓
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If CQ assumption does not hold at x , KKT conditions need not be necessary for local
optimality.

Example 2:
min f (x) = �x1
s.t. g1(x) = �x1  0

g2(x) = �x2  0
g3(x) = �(1� x1)

3 + x2  0
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Proposition: (Sufficient conditions for Constraint Qualification)

1) If

all gi are linear functions (Karlin)

or

all gi are convex and 9a such that gi (a) < 0, 8i 2 I , (Slater)

CQ assumption holds at every x 2 S .

2) If rgi (x), i 2 I (x), are linearly independent, CQ assumption holds at x̄ 2 S .

N.B.: When the gradients of the active constraints are linearly independent,

KKT multiplier vector is unique.
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Theorem: (Necessary and sufficient conditions – convex problems)

If f 2 C 1, gi 2 C 1 8i 2 I are convex, and 9 a such that gi (a) < 0, 8i 2 I , then

x⇤ 2 S is a global minimum if and only if 9 u1, . . . , um � 0 such that

⇢

rf (x⇤) +
Pm

i=1 uirgi (x
⇤) = 0

uigi (x
⇤) = 0 8i 2 I .

Proof:

For Linear Programs, it amounts to the complementary slackness theorem.

Remark: Result holds under milder convexity conditions (f pseudoconvex and
the gi ’s quasiconvex).
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If f is not convex, KKT conditions are not sufficient.

Example 3:
min f (x) = �x2

g1 (x) = �2 + x  0
g2 (x) = �x � 1  0
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General case

Consider
min f (x)
s.t. gi (x)  0 i 2 I = {1, ...,m}

hl(x) = 0 l 2 L = {1, ..., p}
x 2 X ✓ R

n

where f , gi , hl 2 C 1.

When nonlinear equality constraints, usually D(x) = {0}.

Extend previous results by defining cone of directions.
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Definition: Closed cone of the tangents at x

T (x) =

⇢

d 2 R
n : d = λ lim

k!1

xk � x

kxk � xk
, λ � 0,

n

x
k
o

!
k!1

x with x
k 6= x

�

where
�

xk
 

⇢ S .

If d 2 T (x) and 9 such
�

xk
 

! x , the directions of the chords xk � x converge to d .

Illustrations:

Definition: (Constraint Qualification CQ – Abadie)

The CQ assumption holds at x 2 S if T (x) = D(x)
T

H(x) where
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Theorem: (General KKT necessary optimality conditions)

Suppose f 2 C 1, gi 2 C 1 8i , hl 2 C 1 8l and CQ assumption holds at x 2 S.

If x is a local minimum of f over S then 9 ui � 0, 8i 2 I (x) and vl 2 R, 8l 2 L such that

rf (x) +
X

i2I (x)

uirgi (x) +
X

l2L

vlrhl(x) = 0.

N.B.: If only equalities, KKT conditions coincide with classical Lagrange optimality conditions.

Example 1:

min f (x) = x1 + x2
s.t. x21 + x22 = 2
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Example 2:

min f (x) = x1 + x2
s.t. (x1 � 1)2 + x22 � 1 = 0

(x1 � 2)2 + x22 � 4 = 0
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Proposition: (Sufficient conditions for CQ)

If gi convex, hl linear and 9a 2 X such that gi (a) < 0, 8i 2 I and

hl(a) = 0 8l 2 L, then CQ assumption holds at every x 2 S .

If rgi (x), 8i 2 I (x), and rhl(x), 8l 2 L, are linearly independent then

CQ assumption holds at x 2 S .
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5.3 Sufficient optimality conditions

Generic NLP

(P)

8

<

:

min f (x)
s.t. gi (x) ≤ 0 ∀i ∈ I = {1, . . . ,m}

x ∈ X ⊆ R
n

where X is an arbitrary subset (even discrete).

Edoardo Amaldi (PoliMI) Optimization Academic year 2023-24 1 / 7



Definitions

The Lagrange function associated with (P) is

L(x , u) = f (x) +
P

i∈I
uigi (x) ∀x ∈ X and u ≥ 0

N.B.: u ≥ 0 since gi (x) ≤ 0.

(x , u) with x ∈ X and ū ≥ 0 is a saddle point of L (x , u)

if L(x , u) ≤ L(x , u) ∀x ∈ X and L(x , u) ≤ L(x , u) ∀u ≥ 0,

that is, x minimizes L(x , u) over X and u maximizes L(x , u) over Rm.

Illustration:
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Proposition: (Characterization of saddle points)

(x , u) with x ∈ X and u ≥ 0 is a saddle point of L (x , u) if and only if

i) L (x , u) = min
x∈X

L (x , u)

ii) gi (x) ≤ 0 ∀i ∈ I

iii) ūigi (x) = 0 ∀i ∈ I .

Proof*:
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Theorem: (Sufficient optimality condition)

If (x , u) is a saddle point of L(x , u), then x is a global minimum of problem (P).

Proof:

Observations:

Result applies to any mathematical program (convex or not, with f and gi
differentiable or not, X continuous or discrete,. . . ).

For some problems a saddle point may not exist, in general for nonconvex problems.
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Example:
min f (x) = −x2

s.t. 2x − 1 ≤ 0
0 ≤ x ≤ 1

where g(x) = 2x − 1 and X = {x : 0 ≤ x ≤ 1}

Theorem: (saddle point for convex problems)

Suppose f and gi , ∀i ∈ I are convex, X ⊆ R
n is convex and ∃ a ∈ X such that g(a) < 0.

If (P) has an optimal solution x , ∃ u ≥ 0 such that (x , u) is a saddle point of L(x , u).
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Connection with KKT conditions for convex problems

If f and gi ∈ C 1 are convex, X = R
n and ∃ a ∈ X such that g(a) < 0, then x is an

optimal solution if and only if x satisfies the KKT conditions.

Proof:

N.B.: 1) Without convexity assumption a stationary point x may not minimize L(x , u).

2) KKT multipliers are then identical to Lagrange multipliers at the saddle point.
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5.4 Lagrangian duality

Generic NLP:

(P)

8

<

:

min f (x)
s.t. gi (x) ≤ 0 ∀i ∈ I = {1, . . . ,m}

x ∈ X ⊆ R
n

To any minimization NLP we can associate a maximization NLP such that, under some
assumptions, the objective function values of respective optimal solutions coincide.

Tackle the primal problem (P) indirectly, by solving the dual (second) problem.

To try to solve (P), we can look for a saddle point of the Lagrange function.
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Dual function:
w (u) = min L (x , u) ∀u ≥ 0

x ∈ X .

Well-defined if, for instance, f and the gi ’s are continuous and X is compact.

Search for a saddle point (if ∃):

Dual problem: (D)

⇢

max w(u)
u ≥ 0

N.B.: w(u) and (D) are defined even if no saddle point exists.

Observations:

1) Different Lagrangian duals of (P) depending on which gi (x) ≤ 0 are dualized.
Choice affects optimal value of (D) and complexity to evaluate w(u).

2) Lagrangian dual is useful to solve large-scale LPs and (non)convex/discrete
optimization problems.
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Theorem: (Weak duality)

For every feasible x of (P) and u ≥ 0 of (D), we have w(u) ≤ f (x).

Proof:

In particular, for every u ≥ 0 we have w(u) ≤ f (x∗) for an optimal x∗ of (P).

Consequence:

If a feasible solution x of (P) and u ≥ 0 satisfy w(u) = f (x), x is optimal for (P) and u

is optimal for (D).

For Linear Programs the objective function values of optimal solutions of (P) and (D) coincide,

for NLPs this is not always the case.
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Theorem: (Strong duality)

i) If (P) has a saddle point (x , u), then

⇢

max w(u)
u ≥ 0

= w(u) = f (x) = min
�

f (x) : g(x) ≤ 0, x ∈ X
 

.

ii) If ∃ a feasible x̄ of (P) and ū ≥ 0 such that w(ū) = f (x̄), then (x̄ , ū) is a saddle

point of L(x , u).

Proof:
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Consequence:

If f , gi ’s and X ⊆ R
n are convex, ∃ a such that g(a) < 0 and (P) has a finite

optimal solution, ∃ a saddle point (x̄ , ū) and i) holds:
⇢

max w(u)
u ≥ 0

= min
�

f (x) : g(x) ≤ 0, x ∈ X }.

N.B.: Strong duality, the optimal values of the two objective functions coincide.

In general, we can have a duality gap (< instead of =).
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Since under certain conditions we can solve (P) indirectly by solving (D)

Property 1: The dual function w (u) is concave.

Proof*:

Observations:

If X ⊆ Z
n, w(u) is not everywhere continuously differentiable. Concave piecewise

linear function, lower envelope of a (in)finite family of hyperplanes in R
n+1.

In general (D) is easier than (P).

Since w(u) is concave local optima are global optima, but need for ad hoc solution
method: subgradient method.
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Property 2: For ũ ∈ R
m
+ let X (ũ) =

�

x ∈ X : f (x) + ũtg(x) = w(ũ)
 

then

g(x) is a subgradient of w(u) at ũ for each x ∈ X (ũ).

Proof*:

Observations:

Every subgradient of w(u) at ũ can be expressed as a convex combination of the
subgradients g(x) with x ∈ X (ũ).

If w is continuously differentiable at ũ, X (ũ) contains a single element x̃ and g(x̃)
is the gradient of w(u) at ũ.
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Summary

In general (D) is easier than (P) – even if no saddle point exists.

If a saddle point exists: we can solve (D) and derive optimal x∗ of (P)

by minimizing L(x , u∗) over X, ensuring gi (x
∗) ≤ 0 and u∗

i gi (x
∗) = 0 ∀i ∈ I .

If no saddle point exists: optimal u∗ of (D) gives a lower bound w(u∗) for f (x∗).

Find u∗ ≥ 0 maximizing w(u) by using the subgradient method that generates

{uk} → u∗ when k → ∞.

For each uk , we have a lower bound w(uk) for f (x∗) and we determine xk that

minimizes L(x , uk) over X .

Edoardo Amaldi (PoliMI) Optimization Academic year 2023-24 10 / 10



5.5 Second order optimality conditions

Nonlinear program:

min f (x)

s.t. gi (x)  0 i 2 I = {1, . . . ,m}

(P) hl(x) = 0 l 2 L = {1, . . . , k}

x 2 X ✓ R
n

with f , gi ’s and hl ’s of class C
2 and X open subset of Rn.

Lagrange function:

L(x , u, v) = f (x) +

mX

i=1

uigi (x) +

kX

l=1

vlhl(x) = f (x) + u
t
g(x) + v

t
h(x)

with u � 0 and v 2 R
k .

Hessian submatrix w.r.t. the variables xj :
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Second order KKT necessary conditions:

If x is a local minimum of (P) and rgi (x), with i 2 I (x), and rhl(x), with l 2 L, are

linearly independent, then x and some (u, v) satisfy the KKT conditions:

rxL(x , u, v) = rf (x) +

mX

i=1

uirgi (x) +

kX

l=1

vlrhl(x) = 0

gi (x)  0 i 2 I = {1, . . . ,m}

hl(x) = 0 l 2 L = {1, . . . , k}

uigi (x) = 0 i 2 I

u � 0, v 2 R
k
.

Moreover, every d 2 R
n such that

r
t
gi (x)d  0 i 2 I (x)

r
t
hl(x)d = 0 l 2 L

must satisfy
d
t
r

2
xxL(x , u, v)d � 0.
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Second order KKT sufficient conditions:

Let x satisfies with (u, v) the previous KKT conditions.

If
d
t
r

2
xxL(x , u, v)d > 0

for each d 6= 0 such that

r
t
gi (x)d = 0 i 2 I+

r
t
gi (x)d  0 i 2 I 0

r
t
hl(x)d = 0 l = 1, . . . , k

where I+ = {i 2 I : ui > 0} and I 0 = {i 2 I : ui = 0},

then x is a strict local minimum of (P).

See Chap. 12 of J. Nocedal and S. Wright, Numerical Optimization, Springer 1999
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5.6 Quadratic programming

Optimize a quadratic function subject to linear constraints:

min 1
2
x tQx + c tx

s.t. ati x  bi i 2 I

(P) ati x = bi i 2 E

x 2 R
n
,

where Q 2 R
n⇥n.

Without loss of generality: Q is symmetric (same function value with Q not symmetric and

Q = 1
2
(Q + Q

t
)).

Difficulty depends on Q: if Q positive (semi)definite, (P) convex, otherwise can have a
large number of local optima.

Example: min{�x tx : �1  xi  1, i = 1, . . . , n} where all 2n vertices of {�1, 1}n are

local minima.
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Illustrations of convex Quadratic Programs (QPs):

QPs are the simplest NLP problems besides Linear Programs. Efficient QP algorithms
are available.

Many direct applications (for portfolio optimization see exercise 9.1).
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Example: Training linear Support Vector Machines (SVMs)

Training set T = {(x i
, y i ) : x i 2 R

n
, y i 2 {�1, 1}, i = 1, . . . , p}.

Linear decision function: f (w , b, x) = w tx � b.

Separating hyperplane with largest margin (width 2
kwk

) guarantees best generalization.

Hard-margin linear SVM training:

min
w2Rn,b2R

1
2
kwk2

s.t. y i (w tx i � b)� 1 � 0 i = 1, . . . , p.

strictly convex function but possibly huge number of linear constraints.
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Reformulated as QP with a single constraint using duality:

L(w , b, u) =
1

2
kwk2 �

p
X

i=1

ui (y
i (w t

x
i � b)� 1)

...
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5.6.1 QP with only equality constraints

Consider

min{
1

2
x
t
Qx + c

t
x : Ax = b } (1)

where A 2 R
m⇥n.

Since only linear equations, CQ assumption is satisfied at every feasible point and simple
KKT conditions:

Qx + c +

m
X

i=1

uiai = 0

Ax = b.

N.B.: Complementary slackness constraints are automatically satisfied.

More or less direct solution of the linear system:
✓

Q At

A 0

◆✓

x

u

◆

=

✓

�c

b

◆

.

If A of full rank and Q is p.d. on subspace {x 2 R
n : Ax = 0}, matrix is non singular.
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Null-space method

Determine Z 2 R
n⇥(n�m) whose columns span the null space {x 2 R

n : Ax = 0} of A.

Z can be computed by (sub)matrix factorization of A (if A sparse by LU factorization).

Given feasible x0, any other feasible solution

x = x0 + Zw

for an appropriate w 2 R
n�m.

(1) is equivalent to unconstrained QP:

Also other methods but null-space ones are widely used.
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5.6.2 QP with equality and inequality constraints

Active-set methods

min q(x) = 1
2
x tQx + c tx

s.t. ati x  bi i 2 I

(P) ati x = bi i 2 E

x 2 R
n

where Q 2 R
n⇥n.

Idea: Determine I (x⇤) = {i 2 I : ati x
⇤ = bi} where x⇤ is an optimal solution,

by solving a sequence of QPs with only equality constraints.
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Active-set method for convex QPs

Initialization: Find initial feasible x0 and

choose W0 ✓ {i 2 I : ati x0 = bi} [ E of the active constraints at x0, with E ✓ W0.

Iteration k:

Given current feasible xk , determine dk by solving the subproblem:

min{ q(xk + d) : ati (xk + d) = bi , i 2 Wk }, (2)

where Wk is current working set, with Wk ✓ {i 2 I : ati xk = bi} [ E .

(2) is equivalent to:
min{ q(xk + d) : ati d = 0, i 2 Wk }. (3)

N.B.: If Z tQZ is p.d. (always true if Q is p.d.), (3) has a unique solution dk .

Based on solution dk of (3), we determine αk , xk+1 = xk + αkdk and Wk+1.
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• If dk 6= 0, we determine the largest α satisfying all constraints not in Wk :

αk = min{1, min
i 62Wk , at

i
dk>0

bi � ati xk

ati dk

}

and set xk+1 = xk + αkdk .

Wk+1 = Wk [ {i 0} where i 0 is index of one constraint becoming active at xk+1.

• If dk = 0, xk is a minimum over subspace defined by Wk and we set xk+1 = xk .

KKT conditions of (3) imply there are multipliers uk
i such that:

Qxk + c +
X

i2Wk

u
k
i ai = 0. (4)

If uk
i � 0 for every i 2 Wk \ I Then xk is a local optimum of original QP

Else Wk+1 = Wk \ {i
0} where i 0 is the index with the most negative uk

i0 .
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Proposition: If Q is p.d. (q is strictly convex), the method (with anti-cycling rule) finds
an optimal solution within a finite number of iterations.

Note: finite number of working sets.

Example: min q(x1, x2) = (x1 � 1)2 + (x2 � 2.5)2

s.t. �x1 + 2x2 � 2  0 (1)

x1 + 2x2 � 6  0 (2)

x1 � 2x2 � 2  0 (3)

�x1  0 (4)

�x2  0 (5)

Figure:

x
1x , x2 3

x , x0 1

x2

x4

(2,0)

(2,2)

x 5

(4,1)(0,1)

From J. Nocedal, S. Wright, Numerical Optimization, First Edition, Springer 1999, p. 462-463.
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Iteration 0:

x0 =

✓

2
0

◆

and we take W0 = {3, 5}.

Since x0 is a vertex of the feasible solution polyhedron,

x0 minimizes q(x) w.r.t. W0 and

d0 = 0 is optimal solution of min{ q(x0 + d) : at
i
d = 0, i 2 W0 }.

Thus x1 = x0 + α0d0 = x0.

KKT conditions:

rq(x0) =

✓

2
�5

◆

= u3

✓

�1
2

◆

+ u5

✓

0
1

◆

we obtain the multipliers

✓

u3
u5

◆

=

✓

�2
�1

◆

for the active constraints.

Since u3 < u5 < 0, we set W1 = W0 \ {3} = {5}.
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Iteration 1:

Optimal solution of min{ q(x1 + d) : at
i
d = 0, i 2 W1 } is d1 =

✓

�1
0

◆

.

Since d1 does not violate any constraint with indices not in W1, α1 = 1 and

x2 = x1 + α1d1 =

✓

1
0

◆

.

Since at x2 no other constraints are active, we set W2 = W1 = {5}.

Iteration 2:

Optimal solution of min{ q(x2 + d) : at
i
d = 0, i 2 W2 } is d2 = 0.

From KKT conditions

rq(x2) =

✓

0
�5

◆

= u5

✓

0
1

◆

,

we obtain u5 = �5.

Thus x3 = x2 and we set W3 = W2 \ {5} = ;.
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Iteration 3:

Optimal solution of min{ q(x3 + d) : at
i
d = 0, i 2 W3 } is d3 =

✓

0
2.5

◆

.

Since d3 violates constraints (1) and (2) which are not in W1, α3 = 0.6 and

x4 = x3 + α3d3 =

✓

1
1.5

◆

.

Since at x4 only constraint (1) becomes active, we set W4 = {1}.

Iteration 4:

Optimal solution of min{ q(x4 + d) : at
i
d = 0, i 2 W4 } is d4 =

✓

0.4
0.2

◆

.

Since x4 + d4 =

✓

1.4
1.7

◆

satisfies all the constraints with indices not in W1, we take α4 = 1,

set x5 = x4 + d4 and W5 = W4 = {1}.
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Iteration 5:

Optimal solution of min{ q(x5 + d) : at
i
d = 0, i 2 W5 } is d5 = 0.

Solving the KKT conditions (4) we obtain u1 = 1.25 � 0.

Thus x5 =

✓

1.4
1.7

◆

is optimal for the original problem.
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5.6.3 Non convex QP and solvers

If Q has some negative eigenvalues, the active-set method for convex QP can be adapted
by modifying dk and αk in certain situations.

See J. Nocedal, S. Wright, Numerical Optimization, First edition, Springer 1999, p. 468-474.

Since Wk may change by just one index at every iteration, efficient QP solvers proceed
by successive updates of the factors computed at the previous iterations.

Available active-set-based solvers: LINDO, QPOPT, NAG Library, Matlab,...
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5.7 Penalty method and augmented Lagrangian method

Generic NLP:

min f (x)

s.t. ci (x) � 0 i 2 I

ci (x) = 0 i 2 E (1)

x 2 R
n

where f and ci ’s are of class C1 or C2.

Notation, examples and proofs: see Chapter 17 of J. Nocedal, S. Wright, Numerical

Optimization, Springer, 1999, p. 491-500.
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5.7.1 Quadratic penalty method

Idea: Delete constraints, penalize their violation and solve a sequence of unconstrained
optimization problems.

Description for

min f (x)

s.t. ci (x) = 0 i 2 E = {1, . . . ,m} (2)

x 2 R
n.

Definition: The quadratic penalty function problem associated to (2) is

min
x2Rn

Q(x , µ) = f (x) +
1

2µ

X

i2E

c
2
i (x) (3)

with penalty parameter µ > 0..

We consider {µk}k�1 with limk!1 µk = 0 and, for each k, we determine an approximate
solution xk of (3) using an unconstrained optimization method.
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Example: min x1 + x2

s.t. x21 + x22 � 2 = 0

with optimal solution (�1,�1)t .

Quadratic penalty problem:

See J. Nocedal, S. Wright, Numerical Optimization, Springer, 1999, p. 491-492.

Edoardo Amaldi (PoliMI) Optimization Academic Year 2023-24 3 / 16



General scheme

0) Select ε > 0, µ0 > 0, sequence of tolerances {τk}k�0 with τk > 0 and limk!1 τk = 0.

Choose initial x s
0 and set k = 0.

1) Determine an approximate minimizer xk of Q(x , µk) starting from x s
k and terminate

when krQ(x , µk)k  τk .

2) If termination condition is satisfied (e.g, |f (xk�1)� f (xk)| < ε)

Then return solution xk

Else choose µk+1 2 (0, µk) and starting x s
k+1, set k = k + 1 and Goto 1)

Choices:

For convergence results, it suffices that limk!1 τk = 0.

{µk}k�0 generated adaptively starting from µ0: if minimization of Q(x , µk ) is ”difficult”

set e.g. µk+1 = 0.7µk , otherwise µk+1 = 0.1µk .

Judicious choice of the starting x s
k
when solving unconstrained penalty problem at each

iteration: x s
k+1 := xk .
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Convergence

Theorem 1: Suppose each xk is a global minimizer of Q(x , µk) and limk!1 µk = 0,
then every limit point x⇤ of {xk}k�0 generated with above scheme (τk = 0, 8k � 0) is a
global minimum of problem (2).

Proof:

Let x be an optimal solution of (2).
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Theorem 2: If

tolerances τk > 0 satisfy limk!1 τk = 0

limk!1 µk = 0,

then every limit point x⇤ of {xk}k�0 at which all rci (x
⇤), with i 2 E , are linearly

independent is a KKT point of problem (2).

For such points, the subsequence defined by K with limk2K xk = x⇤ satisfies

lim
k2K

�
ci (xk)

µk

= u
⇤
i 8i 2 E , (4)

where u⇤ satisfies with x⇤ the KKT conditions for problem (2).
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Observation: (4) implies that

i) The minimizer xk of Q(x , µk) does not satisfy ci (x) = 0 exactly for all i 2 E

(ci (xk) = �µku
⇤
i ). To obtain a feasible solution, we must µk ! 0.

ii) In some circumstances �
ci (xk )

µk
may be used as estimates of u⇤

i .

Recall: Lagrange function for problem (2) is

L(x , u) = f (x)�
mX

i=1

uici (x) (5)

and KKT conditions require that, apart from ci (x) = 0

rxL(x , u) = rf (x)�
mX

i=1

ui rci (x) = 0. (6)

By comparing

rxQ(x , µ) = rf (x) +
1

µ

mX

i=1

ci (x)rci (x) = 0 (7)

and (6), it appears that �
ci (x)
µ

has been substituted with ui .
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It can be proved that if τk ! 0 then xk ! x⇤ and �
ci (xk )

µk
! u⇤

i i = 1, 2, . . . ,m.

Observation: When µk ! 0 the quadratic penalty problem (3) becomes ill conditioned.

r2
xxQ(x , µk ) = r2f (x) +

1

µk

At(x) A(x) +
1

µk

mX

i=1

ci (x)r
2ci (x) (8)

where At(x) = [rc1(x), . . . ,rcm(x)] and A 2 R
m⇥n of full rank m  n, usually m < n.

When x is close to minimizer of Q(x , µk ) and assumptions of Theorem 2 are satisfied, (4)
implies that

r2
xxQ(x , µk ) ⇡ r2

xxL(x , u
⇤) +

1

µk

At(x) A(x). (9)

Since r2
xxL(x , u

⇤) does not depend on µk and 1
µk

At(x) A(x) has n �m eigenvalues of value 0

and m eigenvalues of value O(1/µk ), numerical issues arise when µk ! 0.

Edoardo Amaldi (PoliMI) Optimization Academic Year 2023-24 8 / 16



Problems with both equality and inequality constraints:

Quadratic penalty problem

min
x2Rn

Q(x , µ) = f (x) +
1

2µ

X

i2E

c
2
i (x) +

1

2µ

X

i2I

([ci (x)]
�)2 (10)

where [y ]� denotes max(�y , 0).

Other penalty functions are available.

If only equality constraints, the exact penalty problem is

min
x2Rn

Q(x , µ) = f (x) +
1

2µ

X

i2E

|ci (x)|. (11)

N.B.: Q is not everywhere differentiable.
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5.7.2 Augmented Lagrangian method

Idea: Reduce ill-conditioning issues of the unconstrained subproblems (in quadratic
penalty method) by introducing explicit estimates of the Lagrange multipliers.

Description for

min f (x)

s.t. ci (x) = 0 i 2 E = {1, . . . ,m} (12)

x 2 R
n.

Definition: The augmented Lagrange function associated to problem (12) is
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Similar approach:

At each iteration: µk > 0 and determine an approximate minimizer xk of LA(x , u
k , µk)

via an unconstrained optimization method, where uk is an updated estimate.

Differentiating w.r.t. x , we obtain

rxLA(x , u, µ) = rf (x)�

mX

i=1

(ui �
ci (x)

µ
)rci (x).

Considerations similar to those in proof of Theorem 2 allow to establish that

u
⇤
i ⇡ u

k
i �

ci (xk)

µk

i 2 E , (13)

which is equivalent to

ci (xk) ⇡ µk (u
k
i � u

⇤
i ) i 2 E . (14)
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General scheme

0) Choose ε > 0, µ0 > 0, tolerances {τk}k�0 with τk > 0 and limk!1 τk = 0,

x s
0 and initial u0, set k := 0.

1) Determine an approximate minimizer xk of LA(x , u
k , µk) starting from x s

k and
terminate when krxLA(x , u

k , µk)k  τk .

2) If overall termination condition is satisfied (e.g, |f (xk�1)� f (xk)| < ε)

Then Stop

Else set u
k+1
i = u

k
i �

ci (xk)

µk

for i 2 E (15)

choose µk+1 2 (0, µk) and next starting solution x s
k+1

set k := k + 1 and Goto 1)
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Including in LA an additional term related to the Lagrange multipliers leads to
substantial improvements w.r.t. the quadratic penalty method.

Example:
min x1 + x2

s.t. x21 + x22 � 2 = 0

with optimal solution x⇤ = (�1,�1)t , optimal multiplier u⇤ = �0.5 and unconstrained
optimization subproblem:

From J. Nocedal, S. Wright, Numerical Optimization, Springer, 1999, p. 513-514.
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Theorem 3:

Let x⇤ be a local minimum of (12) at which the rci (x
⇤), i 2 E , are linearly independent

and 2nd order sufficient optimality conditions are satisfied for u = u⇤.

Then 9 µ > 0 such that for all µ 2 (0, µ], x⇤ is a strict local minimum of LA(x , u
⇤, µ).

N.B.: In general u⇤ is unknown.

The next result

- concerns the more realistic case in which u 6= u⇤,

- provides conditions under which 9 a minimizer of LA close to x⇤ and error bounds on xk
and on uk+1.
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Theorem 4:

Suppose the assumptions of Theorem 3 are satisfied at x⇤ and u⇤, and let µ > 0 be the

corresponding threshold.

Then 9 scalars δ > 0, ε > 0, and M such that

i) For all uk and µk satisfying

kuk � u
⇤k  δ/µk , µk  µ, (16)

the problem
min

x2Rn : kx�x∗kε

LA(x , u
k , µk)

has a unique solution xk . Moreover, we have kxk � x⇤k  Mµkku
k � u⇤k.

ii) For all uk and µk satisfying (16), we have

kuk+1 � u
⇤k  Mµkku

k � u
⇤k,

where uk+1 is given by the formula (15).

iii) For all uk and µk satisfying (16), the matrix r2
xxLA(xk , u

k , µk) is positive definite

and the rci (xk), with i 2 E , are linearly independent.
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Problems with also inequality constraints:

We can introduce slack variables and substitute ci (x) � 0, i 2 I , with

ci (x)� si = 0, si � 0, i 2 I .

In LANCELOT solver, the bounds on the variables are explicitly taken into account in
the subproblem

min
l inf xlsup

LA(x , u
k , µk).
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5.8 Barrier method

Description for:

min f (x)

s.t. ci (x) � 0 i 2 I = {1, . . . ,m} (1)

x 2 R
n.

Notation and examples: Chapter 17 of J. Nocedal, S. Wright, Numerical Optimization, Springer,

1999, p. 498-508.

Definition: Let
X

o = int({x 2 R
n : ci (x) � 0, i 2 I}) 6= ;,

a function defined on R
n is a barrier function if it is continuous over X o , tends to 1

when approaching ∂X and has value 1 on R
n \ X o .

Example: Logarithmic barrier function for ci (x) ≥ 0:

− ln ci (x).
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Idea: Add to objective function the barrier terms associated to the constraints and solve
a sequence of

Definition: The logarithmic barrier problem associated to problem (1) is

min
x∈Rn

P(x , µ) = f (x)� µ
X

i∈I

ln ci (x), (2)

with barrier parameter µ > 0.

N.B.: When µ → 0 the barrier term becomes negligible.

We consider {µk} with limk→∞ µk = 0, start from x0 2 X
o and, for each k, determine

an approximate minimizer x
k
of P(x , µk) with an unconstrained optimization method.
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Example 1:

min x

s.t. x ≥ 0

1− x ≥ 0

with optimal solution x
∗ = 0 and logarithmic barrier problem:

min
x∈R

P(x , µ) = x − µ ln x − µ ln(1− x).

Compare P(x , µ) for values of µ from 1 to 0.01.

See J. Nocedal, S. Wright, Numerical Optimization, Springer, 1999, p. 499-500.
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Example 2:

min (x1 + 0.5)2 + (x2 − 0.5)2

s.t. x1 ∈ [0, 1]

x2 ∈ [0, 1]

with optimal solution x
∗ = (0, 0.5)t and logarithmic barrier problem:

min
x∈R2

P(x , µ) = (x1 + 0.5)2 + (x2 − 0.5)2 − µ [ln x1 + ln(1− x1) + ln x2 + ln(1− x2)].

Compare contours of P(x , µ) for values of µ from 1 to 0.01.

For µ = 0.01, around x
∗ (more elongated and less elliptical) indicate possible numerical

problems.

See J. Nocedal, S. Wright, Numerical Optimization, Springer, 1999, p. 500-502.
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General scheme

0) Choose ε > 0, µ0 > 0, tolerances {τk}k≥0 with τk > 0 and limk→∞ τk = 0,

initial point x s

0. Set k := 0.

1) Determine an approximate minimizer x
k
of P(x , µk) starting from x

s

k
and

terminate when krP(x , µk)k  τk .

2) If overall termination condition is satisfied (e.g, |f (x
k−1)� f (x

k
)| < ε)

Then Stop

Else select µk+1 2 (0, µk) and x
s

k+1, set k := k + 1 and Goto 1)

Since x0 2 X
o the sequence {x

k
} remains in X

0, the algorithm is an

interior point method.
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Important connection between a minimum of P(x , µ), denoted x(µ), and a point
(x∗, u∗) satisfying the KKT conditions of problem (1), namely

rxL(x , u) = rf (x)�
mX

i=1

ui rci (x) = 0 (3)

ci (x) � 0 8i 2 I (4)

uici (x) = 0 8i 2 I (5)

ui � 0 8i 2 I . (6)

In a minimizer x(µ) of P(x , µ), we have

rxP(x , µ) = rf (x)�
mX

i=1

µ

ci (x)
rci (x) = 0. (7)

By defining the estimates of the multipliers

ui (µ) :=
µ

ci (x(µ))
with i = 1, . . . ,m, (8)

(7) can be rewritten as

rf (x)�
mX

i=1

ui (µ)rci (x) = 0 (9)

which is equivalent to (3).
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Observation: For µ > 0 the KKT conditions (3)-(6) hold except (5) because

ui (µ)ci (x(µ)) = µ for i = 1, . . . ,m.

When µ ! 0, a minimizer x(µ) of P(x , µ) and

the associated estimate

ui (µ) :=
µ

ci (x(µ))
with i = 1, . . . ,m

tend to progressively satisfy the KKT conditions of problem (1).

Thus we generate points on the so-called central path

{(x(µ), u(µ)) : µ > 0}

defined by (8).
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Theorem:

Suppose that X o 6= ; and x
∗ is a local minimum of (1) at which the KKT conditions are

satisfied for some u
∗.

Moreover, suppose that

gradients of the active constraints at x∗ are linearly independent,

strict complementarity conditions are satisfied at x∗ (8i 2 I exactly one of ci (x
∗) or

u
∗
i is equal to 0),

2nd order sufficient conditions are satisfied at (x∗, u∗).

Then

i) 9 unique continously differentiable vector function x(µ) s.t. limµ→0+ x(µ) = x
∗.

For all sufficiently small µ, x(µ) is a local minimum of P(x , µ) in some neigborhood
of x∗.

ii) For x(µ) in (i), the Lagrange multiplier estimates u(µ) defined by

ui (µ) = µ/ci (x(µ)) i = 1, . . . ,m,

converge to u
∗ when µ ! 0+.

iii) r2
xxP(x , µ) is positive definite for all sufficiently small µ.
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If also equality constraints, one may include quadratic penalty terms (combined
log-barrier/quadratic penalty function problem).

Sixth computer lab: application of the logarithmic barrier method to LP.

An interior point method for LP

min c
t
x

s.t. Ax = b (10)

x ≥ 0 (11)

is obtained by applying the barrier method to constraints (11) and by adapting the Newton
method to account for (10).

Unlike for Simplex method, such interior point method for LP can be proved to be a polynomial

time algorithm.
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5.9 Introduction to sequential quadratic programming

Generic NLP:

min f (x)

(P) s.t. gi (x)  0 i 2 I = {1, . . . ,m}

hl(x) = 0 l 2 E = {1, . . . , p}

x 2 R
n

where f , gi ’s and hl ’s are of class C2.

Idea: Extend the Netwon method to nonlinearly constrained problems.

Given a current xk , we could try to determine an improving direction dk by solving the
quadratic approximation of (P):

min 1
2
d t
r

2f (xk)d +r
t f (xk)d + f (xk)

(QAk) s.t. 1
2
d t
r

2gi (xk)d +r
tgi (xk)d + gi (xk)  0 i 2 I = {1, . . . ,m}

1
2
d t
r

2hl(xk)d +r
thl(xk)d + hl(xk) = 0 l 2 E = {1, . . . , p}

but difficult because of the quadratic constraints.
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Observation:

If (d∗

, η
∗

, ρ
∗) is a stationary point of the Lagrange function associated to (QAk) it is

also a stationary point of the Lagrange function associated to the Quadratic Program:

min 1
2
d t
r

2
xxL(xk , η

∗

, ρ
∗)d +r

t f (xk)d + f (xk)

(QPAk) s.t. r
tgi (xk)d + gi (xk)  0 i 2 I = {1, . . . ,m}

r
thl(xk)d + hl(xk) = 0 l 2 E = {1, . . . , p}

All constraints are linear (approximations).

To obtain a good approximation of (P) via Quadratic Programs, the objective function
must include not only a quadratic model of f but also 2nd order information of the gi ’s.
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General scheme

Let x0, u0 and v 0 be estimates of a solution of (P) and of the corresponding multipliers.

Iteration k:

Given (xk , uk , v k) determine dk and the corresponding multipliers (η
k
, ρ

k
) of the

Quadratic Program:

min 1
2
d t
r

2
xxL(xk , uk , v k)d +r

t f (xk)d

(QPk) s.t. r
tgi (xk)d + gi (xk)  0 i 2 I = {1, . . . ,m}

r
thl(xk)d + hl(xk) = 0 l 2 E = {1, . . . , p}

Set xk+1 := xk + dk , uk+1 := η
k

and v k+1 := ρ
k
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Although (QPk) derives from (QPAk) by subsituting the optimal multipliers with the
current estimates, it can be proved that:

- feasible region of the subproblem (QPk) is a linear approximation of that of the
original problem,

- Lagrange function LQ(d , η, ρ) of (QPk) is a quadratic approximation of that of (P).

An iteration of the Sequential Quadratic Programming method (SQP) is equivalent to:

- carry out one iteration of the Newton method for the Lagrange function,

- enforce feasibility with respect to the linearization of the feasible region.

The SQP method is well defined:

Proposition:

(x∗

, u∗

, v∗) is a KKT point of (P) if and only if (d∗

, η
∗

, ρ
∗) = (0, u∗

, v∗) is a KKT point
of (QPk).
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Convergence properties similar to those for Newton method:

Quadratic local convergence if

(i) Hessian matrices of the objective function and constraints are Lipschitz continuous,

(ii) constraint qualification assumption is satisfied,

(iii) 2nd order sufficient optimality conditions and strict complementarity conditions are
satisfied.

To guarantee global convergence:

- 1-D search that minimizes an appropriate merit function such as

M(x ;µ) = f (x) +
1

2µ
(

mX

i=1

max{0, gi (x)}+

pX

l=1

|hl(x)| )

- or trust region based approach.

Quasi-Newton versions (without 2nd order derivatives) have also been investigateded.

Several SQP codes are available (SQP, NPSOL, SNOPT, Matlab,...).
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Subgradient method

Consider minx2Rn f (x) with f convex.

Start from an abitrary x0.

At k-th iteration: consider γ
k
2 ∂f (x

k
) and set

x
k+1 := x

k
� αk γ

k

with αk > 0

Observation: No 1-D search (optimization) because for nondifferentiable functions a

subgradient γ ∈ ∂f (x) is not necessarily a descent direction!
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Example: min�1x1,x21 f (x1, x2) with f (x1, x2) = max{−x1, x1 + x2, x1 − 2x2}

Level curves in black, points of nondifferentiability (t, 0), (−t, 2t) and (−t,−t) for t ≥ 0, global
minimum x⇤ = (0, 0).

At x
k
= (1, 0)t consider γ

k
= (1, 1) ∈ ∂f (x

k
), f (x) increases along

{x ∈ R
2 : x = x

k
− αkγ

k
,αk ≥ 0} but if αk is sufficiently small then x

k+1 = x
k
− αkγ

k
is

closer to x⇤.

From Chapter 8, Bazaraa et al., Nonlinear Programming, Wiley, 2006, p. 436-437
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Theorem:

If f is convex, limkxk!1 f (x) = +1, limk!1 αk = 0 and
P1

k=0 αk = 1, the
subgradient method terminates after a finite number of iterations with an optimal
solution x

⇤ or infinite sequence {x
k
} admits a subsequence converging to x

⇤.

Stepsize:

In practice {αk} as above (e.g., αk = 1/k) are too slow.

An option: αk = α0ρ
k for a given ρ < 1. A more popular one (min problems):

αk = εk
f (x

k
)� f̂

kγ
k
k2

,

where 0 < εk < 2 and f̂ is either the optimal value f (x⇤) or an estimate.

Stopping criterion: prescribed maximum number of iterations
(even if 0 2 ∂f (x

k
) it may non be considered at x

k
).

Need to store the best solution x
k
found.

Simple extension for bounds (projections).
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