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Course’s aim: Present the main concepts and methods of discrete and nonlinear
optimization, covering also modeling and application aspects.

Link to detailed program

”Discrete Optimization” and ”Nonlinear Optimization” (5 credits) correspond to
two overlapping parts of ”Optimization” (8 credits).

- Discrete Optimization includes Chapters 1-3, the exercise sets n. 1-5, the
computer labs n. 1-3, including a brief review of AMPL/Python basics.

- Nonlinear Optimization includes Chapters 1, 2, 4 and 5, the exercise sets 1, 6-9,
the computer labs 4-6, including a brief review MATLAB/Python basics.
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Prerequisites

For Discrete Optimization part:

linear programming (simplex algorithm, LP duality)

graph optimization (minimum spanning tree, maximum flow)

basics of integer linear programming (Branch and Bound, Gomory cuts)

basics of Python/AMPL modeling language

For Nonlinear Optimization part: basics of Python.
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Schedule

Monday 13.15 - 15.15 Room B.4.4

Thursday 13.15 - 15.15 Room B.2.4

Friday 13.15 - 16.15 (L + Ex/Lab) Room B.4.4

Lectures (L), exercises (E) and computer laboratory (Lab) sessions.

Computer laboratory sessions

Discrete Optimization part: one hour on AMPL/Python, 3 two-hour
meetings using AMPL/Python

Nonlinear Optimization part: one hour on MATLAB/Python (Optimization
toolbox), 3 two-hour meetings using MATLAB/Python.
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Instructors

Lectures:

I Edoardo Amaldi edoardo.amaldi@polimi.it

Exercises:

I Marta Pascoal marta.brazpascoal@polimi.it

Computer labs:

I Maximiliano Cubillos maximiliano.cubillos@polimi.it
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Teaching material

Material for the lectures, exercises and computer labs made available
progressively on WeBeep.

List of references in the course program.

Evaluation

Written exam covering all the material presented in the lectures and the meetings
devoted to the exercises and the computer labs.

For students enrolled in D.O. or N.O., the exam will cover only the corresponding
part of the material. See course program for details.

Students enrolled in both D.O. and N. O. (5 credits each) take the exam of
”Optimization” (8 credits) and conduct a project/individual study (2 credits) to
be defined with the instructor.
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Chapter 1: Introduction

Optimization is an active and successful branch of applied mathematics with a
very wide range of relevant applications.

Given X ✓ R
n and f : X ! R to be minimized, find an optimal solution x∗ 2 X ,

i.e., such that
f (x∗)  f (x) 8x 2 X .

Course’s aim: Present the main concepts and methods of discrete and nonlinear
(continuous) optimization, covering also modeling aspects.

See course’s information slides also for prerequisites and joint courses.
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Many decision-making problems cannot be appropriately formulated/approximated
in terms of linear models due to intrinsic nonlinearity.

Examples

1) Production planning

Determine the production levels so as to maximize the total profit while respecting
the resource availability constraints.

- ”Price elasticity”: unit profit decreases when amount produced increases.

- ”Economy of scale”: unit cost often decreases when amount produced increases.
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2) Discrete decisions modeled with binary/integer variables.

Special type of nonlinearity: x 2 Z , sin(⇡x) = 0
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1.1 Examples of problems and models

1) Location and transportation

Given

m warehouses, indexed by i = 1 . . .m, with capacity pi and area Ai ✓ R
2

n clients with coordinates (aj , bj) and demand dj , with j = 1 . . . n,

decide where to locate warehouses and how to serve clients so as to minimize
transportation costs while respecting capacities and demands.
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1.1 Examples of problems and models

1) Location and transportation

Given

m warehouses, indexed by i = 1 . . .m, with capacity pi and area Ai ✓ R
2

n clients with coordinates (aj , bj) and demand dj , with j = 1 . . . n,

decide where to locate warehouses and how to serve clients so as to minimize
transportation costs while respecting capacities and demands.

Assumptions: single type of product and
Pm

i=1 pi �
Pn

j=1 dj
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Decision variables:

(xi , yi ) coordinates of i-th warehouse, 1  i  m

wij amount of product transported from warehouse i to client j , 1  i  m

and 1  j  n

tij distance between warehouse i and client j , 1  i  m and 1  j  n

Optimization model:

min
Pm

i=1

Pn
j=1 wij tij

s.t.
Pn

j=1 wij  pi 8i
Pm

i=1 wij � dj 8j

tij =
p

(xi � aj)2 + (yi � bj)2 8i , j (1)

(xi , yi ) 2 Ai ✓ R
2 8i

wij � 0, tij � 0 8i , j

N.B.: tij can be substituted using (1).
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2) Image reconstruction (Computerized Tomography)

Volume V ✓ R
3 subdivided into n small cubes Vj (”voxels”).

Assumption: matter density is constant within each voxel.

Problem: Given measurments of m beams, reconstruct 2-D image of V (”slice”),
i.e., determine the density xj for each Vj .
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2) Image reconstruction (Computerized Tomography)

Volume V ✓ R
3 subdivided into n small cubes Vj (”voxels”).

Assumption: matter density is constant within each voxel.

Problem: Given measurments of m beams, reconstruct 2-D image of V (”slice”),
i.e., determine the density xj for each Vj .

2-D illustration:

For i-th beam: aij is the path length within Vj ,

I0 is the X-ray intensity at source and Ii at the exit.

The i-th beam total log-attenuation log I0
Ii
is linear in the density:

Pn

j=1 aijxj
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Given m beams with prescribed directions,

n
X

j=1

aijxj = bi = log
I0

Ii
i = 1, . . . ,m

xj � 0 j = 1, . . . , n

is usually infeasible due to measurement errors, non uniformity of Vj s,...
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Given m beams with prescribed directions,

n
X

j=1

aijxj = bi = log
I0

Ii
i = 1, . . . ,m

xj � 0 j = 1, . . . , n

is usually infeasible due to measurement errors, non uniformity of Vj s,...

Possibile formulation:

min
Pm

i=1(bi �
Pn

j=1 aijxj)
2

s.t. xj � 0 j = 1, . . . , n.
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Given m beams with prescribed directions,

n
X

j=1

aijxj = bi = log
I0

Ii
i = 1, . . . ,m

xj � 0 j = 1, . . . , n

is usually infeasible due to measurement errors, non uniformity of Vj s,...

Possibile formulation:

min
Pm

i=1(bi �
Pn

j=1 aijxj)
2

s.t. xj � 0 j = 1, . . . , n.

Since n � m, to avoid alternative optimal solutions we may minimize:

f (x) =

m
X

i=1

(bi �
n

X

j=1

aijxj)
2 + �

n
X

j=1

xj with � > 0

Edoardo Amaldi (PoliMI) Optimization Academic year 2032-24 8 / 17



f (x) may also involve

nonlinear terms accounting for the properties of matter/image

stochastic model of attenuation and maximum likelihood estimator.

Also optimize the number/directions of beams.

4-D optimization to account for respiratory motion.
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3) Combinatorial auctions

Participants (bidders) can place bids on combinations of discrete items.

Examples: airport time slots, wireless bandwidth, delivery routes, railroad

segments, rare stamps or coins,...

Consider

set N of n bidders,

set M of m distinct items,

for every S ✓ M, bj(S) is the bid that j 2 N is willing to pay for S .
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3) Combinatorial auctions

Participants (bidders) can place bids on combinations of discrete items.

Examples: airport time slots, wireless bandwidth, delivery routes, railroad

segments, rare stamps or coins,...

Consider

set N of n bidders,

set M of m distinct items,

for every S ✓ M, bj(S) is the bid that j 2 N is willing to pay for S .

Assumption: if S \ T = ; then bj(S) + bj(T )  bj(S [ T )

Bidders are willing to pay more for S ∪ T than for S and T individually (e.g., complete

collection of rare stamps).
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Key problem: Determine the winner of each item so as to maximize total revenue.

For every S ✓ M

b(S) = maxj∈N bj(S)

xS =

⇢

1 if the highest bid on S is accepted
0 otherwise

Formulation:

max
P

S⊆M b(S)xS

s.t.
P

S⊆M : i∈S xS  1 8i 2 M

xS 2 {0, 1} 8S ⇢ M

with 2|M| variables.

N.B.: When xS = 1, S is given to a bidder paying the largest amount.
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General optimization problem

min f (x)

s.t. gi (x)  0 1  i  m

x 2 S ✓ R
n

- the algebraic and set constraints define the feasible region

X = S \ {x 2 R
n : gi (x)  0, 1  i  m},

where gi : S ! R for i = 1, . . . ,m.

- objective function f (x) with f : X ! R.
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Assume w.l.o.g. that

- minimization problem since

max{f (x) : x 2 X} = �min{�f (x) : x 2 X}.

Illustration:

- all algebraic constraints are inequality constraints since

g(x) = 0 ⌘

⇢

g(x)  0
g(x) � 0.
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Definition

i) A feasible solution x∗ 2 X is a global optimum if

f (x∗)  f (x) 8x 2 X .

ii) A feasible solution x 2 X is a local optimum if 9 ✏ > 0 such that

f (x)  f (x) 8x 2 X \N✏(x)

where N✏(x) = {x 2 X : kx � xk  ✏}.

Illustration:

For difficult problems, we settle for good local optima within a reasonable
computing time.
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Main classes of optimization problems

Terminology: programming ⌘ optimization

f gi S problem type
linear linear S = R

n Linear Programming (LP)
linear linear S ⊆ Z

n Integer LP (ILP)
linear linear S ⊆ Z

n1 × R
n2 with n = n1 + n2 Mixed Integer LP (MILP)

at least one nonlinear S ⊆ R
n Nonlinear Programming (NLP)

at least one nonlinear S ⊆ Z
n1 × R

n2 with n = n1 + n2 Mixed Integer NLP (MINLP)

Some important special cases:

Quadratic programming: f (x) = xTQx + cT x with linear constraints

Convex programming: functions f and gi s and set S are convex.
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Some fields of application

health care planning and management (treatment planning, workforce
scheduling, operating theater scheduling,...)

logistics (location of plants and services, transportation, routing) and supply
chain design and management

data mining and machine learning: classification, clustering, approximation,..

optimal control (determine the trajectory of a robot arm, airplane, shuttle)

computational biology (determine the 3-D structure of proteins,...)

economics (risk management, portfolio optimization, combinatorial auctions,
equilibria of games,. . . )

network planning and management (wired and wireless telecommunications,
electric networks,...)

production planning and inventory management (manufacturing, chemical
processes, energy generation,...)
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Some fields of application

management of environmental and territorial resources (water, forest,...)

design of experiments (for chemical and pharmaceutical companies)

signal and image processing (2-D and 3-D reconstruction)

statistics (e.g., nonlinear regression, estimation of distribution parameters)

agriculture and agri-food industry

dimensioning and optimization of structures (bridge, aircraft profile,...)

. . .
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2.1 Basic concepts

In R
n with Euclidean norm

x 2 S ✓ R
n is an interior point of S if 9 ε > 0 such that

Bε(x) = {y 2 R
n : ky � xk < ε} ✓ S .

x 2 R
n is a boundary point of S if, for every ε > 0, Bε(x) contains at least one

point of S and one point of Rn \ S .

Set of all interior points of S ✓ R
n is the interior of S , denoted by int(S).

Set of all boundary points of S is the boundary of S , denoted by ∂(S).

Illustrations:
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In R
n with Euclidean norm

S ✓ R
n is open if S = int(S); S is closed if its complement is open.

Intuitively, a closed set contains all the points in ∂(S).

S ✓ R
n is bounded if 9 M > 0 such that kxk  M for every x 2 S .

S ✓ R
n closed and bounded is compact.

Illustrations:
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Properties:

S ✓ R
n is closed if and only if every sequence {x i}i2N ✓ S that converges, converges to

x 2 S .

S ✓ R
n is compact if and only if every sequence {x i}i2N ✓ S admits a subsequence that

converges to a point x 2 S .

For convex analysis see:

Bazaraa, Sherali, Shetty, Nonlinear Programming – Theory and Algorithms, third edition,
Wiley Interscience, 2006 (Chapters 2 and 3)
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Existence of an optimal solution

In general, when minimizing f : S ✓ R
n ! R, we only know that a largest lower bound

(infimum) exists, that is
inf
x2S

f (x).

Theorem (Weierstrass):

Let S ✓ R
n be nonempty and compact, and f : S ! R be continuous. Then 9 x⇤ 2 S

such that f (x⇤)  f (x) for every x 2 S .

Examples where the result does not hold:

S is not closed, S is not bounded or f (x) is not continuous on S .

When x⇤ 2 S exists, we can write minx2S f (x).
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Cones and affine subspaces

Consider any S ⇢ R
n

Definition: cone(S) denotes the set of all conic combinations of points of S , i.e., all
x =

Pm

i=1 αi x i with x1, . . . , xm 2 S and αi � 0 for every i , 1  i  m.

Examples: polyedral cones and ”ice cream” cones

Definition: aff(S) denotes the smallest affine subspace that contains S .

aff(S) coincides with the set of all affine combinations of points in S , i.e., all
x =

Pm

i=1 αi x i with x1, . . . , xm 2 S ,
Pm

i=1 αi = 1, and αi 2 R for every i , 1  i  m.

Examples:
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2.2 Elements of convex analysis

Definitions:

- C ⇢ R
n is convex if

αx1 + (1� α)x2 2 C 8x1, x2 2 C and 8α 2 [0, 1].

- x 2 R
n is a convex combination of x1, . . . , xm 2 R

n if

x =
m
X

i=1

αi x i

with
Pm

i=1 αi = 1 and αi � 0 for every i , 1  i  m.

Property: If Ci with i = 1, . . . , k are convex, then \k
i=1Ci is convex.
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Examples of convex sets

1) Hyperplane H = {x 2 R
n : ptx = β} with p 6= 0.

For x 2 H, ptx = β implies H = {x 2 R
n : pt(x � x) = 0} and hence p is orthogonal to all the

vectors (x � x) for x 2 H.

N.B.: H is closed since H = ∂(H)

2) Closed half-spaces H+ = {x 2 R
n : ptx � β} and H� = {x 2 R

n : ptx  β} with
p 6= 0.
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3) Feasible region X = {x 2 R
n : Ax � b, x � 0} of a Linear Program (LP)

min c tx

s.t. Ax � b

x � 0

X is a convex and closed subset (intersection of m + n closed half-spaces if A 2 R
m⇥n).

Definition: The intersection of a finite number of closed half-spaces is a polyedron.

Illustration:

N.B.: The set of optimal solutions of a LP is a polyhedron (add ctx = z⇤ with optimal z⇤)
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Convex hulls and extreme points

Definition: The convex hull of S ✓ R
n, denoted by conv(S), is the intersection of all

convex sets containing S .

Illustration:

Equivalent characterizations (external/internal descriptions): conv(S) and set of all convex

combinations of points in S .

Definition: Given C ✓ R
n convex, x 2 C is an extreme point of C if it cannot be

expressed as convex combination of two different points of C , that is

x = αx1 + (1� α)x2 with x1, x2 2 C and α 2 (0, 1)

implies that x1 = x2.

Examples:

convex sets with a finite/infinite number of extreme points.
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Projection on a convex set

Lemma (Projection):

Let C ✓ R
n be nonempty, closed and convex, then for every y 62 C there exists a unique

x 0 2 C at minimum distance from y .

Moreover, x 0 2 C is the closest point to y if and only if

(y � x
0)t(x � x

0)  0 8x 2 C .

Geometric llustration:

Definition: x 0 is the projection of y on C .
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Separation theorem

Geometrically intuitive but fundamental result.

Theorem (Separating hyperplane)

Let C ⇢ R
n be nonempty, closed and convex and y 62 C , then 9 p 2 R

n such that
ptx < pty for every x 2 C .

9 hyperplane H = {x 2 R
n : ptx = β} with p 6= 0 separating y from C , i.e., such that

C ✓ H
� = {x 2 R

n : p
t
x  β} and y 62 H

� (pt
y > β)

Illustration:

Proof:
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Consequences of separation theorem

1) Any nonempty, closed and convex set C ✓ R
n is the intersection of all closed

half-spaces containing it.

Definition: Let S ⇢ R
n with S 6= ; and x 2 ∂(S) ( boundary w.r.t. aff(S) ),

H = {x 2 R
n : pt(x � x) = 0} is a supporting hyperplane of S at x if S ✓ H� or

S ✓ H+.

Illustration:

2) Supporting hyperplane:

If C 6= ; is convex then for every x 2 ∂(C) there exists (at least) a supporting
hyperplane H at x , i.e., 9 p 6= 0 such that pt(x � x)  0, for each x 2 C .

Examples:

cases with 1/1/0 supporting hyperplanes at a given x 2 ∂(C)
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Central result of Optimization (Game theory) from which we will derive the optimality
conditions for Nonlinear Optimization.

3) Farkas Lemma:

Let A 2 R
m⇥n and b 2 R

m. Then

9 x 2 R
n such that Ax = b and x � 0 , 6 9 y 2 R

m such that y t
A  0t and y

t
b > 0.

Provides an infeasibility certificate, also known as theorem of the alternative.

Alternative: exactly one of Ax = b, x � 0 and y tA  0t , y tb > 0 is feasible.

Geometric interpretation:

b belongs to (convex) cone generated by the columns of A, i.e.
cone(A)= {z 2 R

m : z =
Pn

j=1 xj Aj , x1 � 0, . . . , xn � 0}

if and only if no hyperplane separating b from cone(A) exists.

Alternative: b 2 cone(A) or b 62 cone(A)
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Alternative:

b 2 cone(A)orb 62 cone(A)

Proof (Farkas Lemma):
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2.2.2 Convex functions

Definitions:

A function f : C ! R defined on a convex set C ✓ R
n is convex if

f (αx1 + (1� α)x2)  αf (x1) + (1� α)f (x2) 8x1, x2 2 C and 8α 2 [0, 1],

f is strictly convex if the inequality holds with < for all x1, x2 2 C with x1 6= x2

and α 2 (0, 1).

f is concave if �f is convex; f is linear if it is both convex and concave.
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Definitions:

The epigraph of f : S ✓ R
n ! R, denoted by epi(f ), is the subset of Rn+1

epi(f ) = {(x , y) 2 S ⇥ R : f (x)  y}.

Let f : C ! R be convex, the domain of f is the subset of Rn

dom(f ) = {x 2 C : f (x) < +1}.
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Properties:

Let C ✓ R
n with C 6= ; and f : C ! R be convex.

For each β 2 R (also β 2 +1), the level sets

Lβ = {x 2 C : f (x)  β} and {x 2 C : f (x) < β}

are convex subsets of Rn.

f is continuous in the relative interior (with respect to aff(C)) of its domain.

f is convex if and only if epi(f ) is a convex subset of Rn+1 (exercise 1.5).
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Optimal solution of convex problems

Consider minx2C✓Rn f (x) where C ✓ R
n and f : C ! R are convex.

Proposition:

i) If C and f are convex, each local minimum of f on C is a global minimum.

ii) If f is strictly convex on C , 9 at most one global minimum (if not unbounded).

Proof:
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Special case: Linear programming (LP) problems

min c tx

s.t. Ax � b

x � 0

Proposition:

Given any LP with P = {x 2 R
n : Ax � b, x � 0} 6= ;, then either 9 (at least) one

optimal extreme point or the objective function value is unbounded below over P.

Geometric illustration:
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Characterizations of convex functions

Proposition 1: f : C ! R of class C1 with nonempty convex and open C ✓ R
n is

convex if and only if

f (x) � f (x) +rt
f (x)(x � x) 8x , x 2 C .

f is strictly convex if and only if inequality holds with > for all x , x 2 C with x 6= x .

Geometric interpretation:

The linear approximation of f at x (1st order Taylor’s expansion) bounds below f (x) and

H = {

✓

x

y

◆

2 R
n+1 : (rt f (x) � 1)

✓

x

y

◆

= �f (x) +rt f (x) x }

is a supporting hyperplane of epi(f ) at (x , f (x)), with epi(f ) ✓ H�.
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Proposition 2: f : C ! R of class C2 with nonempty convex and open C ✓ R
n is

convex if and only if the Hessian matrix r2f (x) = ( ∂2f
∂xi∂xj

) is positive

semidefinite at every x 2 C .

For f 2 C2, if r2f (x) is positive definite 8x 2 C then f (x) is strictly convex.

N.B.: Sufficient condition not necessary: f (x) = x4 is strictly convex but f 00(0) = 0

Definition:

A symmetric matrix A n ⇥ n is positive definite if y tAy > 0 8y 2 R
n with y 6= 0,

A symmetric matrix A n ⇥ n is positive semidefinite if y tAy � 0 8y 2 R
n.

Equivalent definitions: based on the sign of the eigenvalues/principal minors of A or of

the diagonal coefficients of specific factorizations of A (e.g., Cholesky factorization).
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Convexity-preserving operations

Certain operations preserve the convexity of functions:

weigthed sum with non-negative weights

pointwise maximum

...

See exercise 1.4
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Subgradients of convex/concave functions

Convex/concave not everywhere differentiable (continuous) functions, e.g. f (x) = |x |.

Generalization of the concept of gradient for C1 functions to piecewise C1 functions.

Definitions: Let C ✓ R
n and f : C ! R be convex.

• γ 2 R
n is a subgradient of f at x 2 C if

f (x) � f (x) + γ
t(x � x) 8x 2 C ,

• The subdifferential, denoted by ∂f (x), is the set of all the subgradients of f at x .

Example: f (x) = x2, the only subgradient at x = 3 is γ = 6.
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Other examples:

1) For f (x) = |x |, clearly γ = 1 if x > 0, γ = �1 if x < 0, ∂f (x) = [�1, 1] if x = 0.

2) Consider f (x) = min{f1(x), f2(x)} with f1(x) = 4� |x | and f2(x) = 4� (x � 2)2.

f (x) =

⇢

4� x 1  x  4
4� (x � 2)2 otherwise
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Properties:

Let C ✓ R
n and f : C ! R be convex.

1) f admits at least a subgradient at every interior point x of C .

In particular, if x 2 int(C) then 9 γ 2 R
n such that

H = {(x , y) 2 R
n+1 : y = f (x) + γt(x � x)}

is a supporting hyperplane of epi(f ) at (x , f (x)).

N.B.: Existence of (at least) a subgradient at every point of int(C), with C convex, is a

necessary and sufficient condition for f to be convex on int(C).

2) If x 2 C , ∂f (x) is a nonempty, convex, closed and bounded set.

3) x⇤ is a (global) minimum of f on C if and only if 0 2 ∂f (x⇤).
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3.1 Integer Programming models

A wide variety of decision-making problems in science, engineering and management can
be formulated as discrete optimization problems:

minx2X c(x)

where X discrete set and c : X ! R.

A natural and systematic way to tackle them is as Integer Optimization problems.

Definitions: A generic Mixed Integer Linear Programming (MILP) problem is

min c tx

s.t. Ax � b

x 2 Z
n1 ⇥ R

n2

with A 2 Z
m⇥(n1+n2), c 2 Z

n1+n2 and b 2 Z
m.

If xj 2 Z for all j , it is an Integer Linear Programming (ILP) problem.

If xj 2 {0, 1} for all j , it is a Binary Linear Programming (0-1-ILP) problem.

W.l.o.g. only inequalities and all coefficients are integer.
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Recall: xi 2 Z is nonlinear constraint

Proposition: 0-1-ILP is NP-hard, (M)ILP are at least as difficult.

Theory: No algorithm can find, for every instance of 0-1-ILP (ILP/MILP), an optimal
solution in polynomial time in the instance size, unless P=NP.

Practice: Many medium-size (M)ILPs are extremely challenging!

Feasible regions of ILP/MILP:

(M)ILP is a powerful and versatile modeling/solution framework.
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3.1.1 Modeling techniques and examples

binary choice

association between entities

forcing constraints

piecewise linear cost functions

modeling with exponentially many constraints

disjunctive constraints

linearizations
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1) Binary choice

A binary variable allows to model a choice between two alternatives.

Example 1: Knapsack problem

Given

n objects

profit pi and weight ai for each object i , with 1  i  n

knapsack capacity b

decide which objects to select so as to maximize total profit while respecting the
capacity constraint.

ILP formulation

Variables: xi = 1 if i-th object is selected and xi = 0 otherwise, 1  i  n

max
Pn

i=1 pixi
Pn

i=1 aixi  b

xi 2 {0, 1} 8i

Binary knapsack is NP-hard.
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Example 2: Set Covering/Packing/Partitioning problems

Given

groundset M = {1, 2, . . . ,m} with 1  i  m,

collection {M1, . . . ,Mn} of subsets indexed by N = {1, . . . , n} (Mj ✓ M for j 2 N),

a cost/weight cj for each Mj with j 2 N,

a subset of indices F ✓ N defines a

cover of M if [j2FMj = M

packing of M if Mj1 \Mj2 = ; 8j1, j2 2 F , j1 6= j2

partition of M if both a cover and a packing of M

Total cost/weight of a subset indexed by F ✓ N is
P

j2F cj .

Illustrations:
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Set Covering problem:

Given M = {1, 2, . . . ,m}, {M1, . . . ,Mn} indexed by N = {1, . . . , n}, and a cost cj of Mj

for each j 2 N, find a cover of M with minimum total cost.

ILP formulation

Parameters: incidence matrix A = [aij ] with aij = 1 if i 2 Mj and aij = 0 otherwise

Variables: xj = 1 if Mj is selected and xj = 0 otherwise, j 2 N

min

(

n
X

j=1

cjxj : Ax � 1, x 2 {0, 1}n
)

Set Covering is NP-hard.

Application: Emergency service location (ambulances or fire stations)

M = { areas to be covered } and N = { candidate sites }

Mj = { areas reachable in at most τ minutes from candidate site j }

Decide where to locate ambulances so as to minimize the total cost, while guaranteeing that the

next call is served within τ minutes.
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Set Packing problem:

max

(

n
X

j=1

cjxj : Ax  1, x 2 {0, 1}n
)

where the cj represent ”profits”

Application: Combinatorial auctions (see introduction)

Determine the winner of each item so as to maximize total revenue:

max
P

S✓M b(S)xS

s.t.
P

S✓M : i2S xS ≤ 1 ∀i ∈ M

xS ∈ {0, 1} ∀S ⊂ M.

Set Packing is NP-hard.
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Set Partitioning problem:

min or max

(

n
X

j=1

cjxj : Ax = 1, x 2 {0, 1}n
)

where cjs represent ”costs” or ”profits”

Application: Airline crew scheduling (see Computer Lab 3)

Given planning horizon.

M = { flight legs } single takeoff-landing phases to be carried out within a predefined
time window.

Mj = { feasible subsets of flight legs } doable by same crew respecting all constraints
(e.g., compatible flights, rest periods, total flight time,...).

Assign the crews to the flight legs so as to minimize total cost.

Other application: distribution planning (assign customers to routes)

Set Partitioning is NP-hard.

Edoardo Amaldi (PoliMI) Optimization Academic year 2023-24 9 / 21



2) Association between entities

Binary variables allow to model associations between two (several) entities.

Example 3: Assignment problem

Given

n projects and n persons

cost cij for assigning project i to person j , 8 i , j 2 {1, . . . , n}

decide which project to assign to each person so as to minimize the total cost while
completing all projects.

Assumptions: every person can perform any project, and each person (project) must be

assigned to a single project (person).

ILP formulation

Variables: xij = 1 if i-th project is assigned to j-th person and xij = 0 otherwise,
1  i , j  n

min
Pn

i=1

Pn

j=1 cijxij

s.t.
Pn

i=1 xij = 1 8j
Pn

j=1 xij = 1 8i

xij 2 {0, 1} 8i , 8j
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3) Forcing constraints

To impose that ”a decision X can be made only if a decision Y has also been made”.

Example 4: Uncapacitated Facility Location (UFL)

Given

M = {1, 2, . . . ,m} clients, i 2 M

N = {1, 2, . . . , n} candidate sites where a depot can be located, j 2 N

fixed cost fj for opening depot in j , 8j 2 N

cij transportation cost if the whole demand of client i is served from depot j ,
8i 2 M, 8j 2 N

decide where to locate the depots and how to serve the clients so as to minimize the
total costs while satisfying all demands.

Illustration:

UFL is NP-hard.
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MILP formulation

Variables:

xij = fraction of demand of client i served by depot j , with 1  i  m, 1  j  n

yj = 1 if depot in j is opened and yj = 0 otherwise, with 1  j  n

min
P

i2M

P

j2N cijxij +
P

j2N fjyj

s.t.
P

j2N xij = 1 8i 2 M
P

i2M xij  myj 8j 2 N (1)

0  xij  1 8i 2 M, j 2 N

yj 2 {0, 1} 8j 2 N

with n linking constraints (1).

Capacitated FL variant:

If di demand of client i and kj capacity of depot j , capacity constraints:
X

i2M

dixij  kjyj 8j 2 N
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4) Piecewise linear cost functions

Continuous and binary variables allow to model nonconvex piecewise linear cost
functions.

Example 5: Minimization of piecewise linear cost functions

Arbitrary such f : [x1
, xk ] ! R specified by (x i

, f (x i )) with 1  i  k and x1
< . . . < xk .

Illustration minx2[x1,xk ] f (x):

Any x 2 [x1
, xk ] and corresponding f (x) can be expressed as

x =
k

X

i=1

λix
i and f (x) =

k
X

i=1

λi f (x
i ) with

k
X

i=1

λi = 1 and λ1, . . . ,λk � 0,
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Choice of λi s is unique if at most two consecutive λi can be nonzero.

For any x 2 [x i
, x i+1], x = λix

i + λi+1x
i+1 with λi + λi+1 = 1 and λi � 0,λi+1 � 0.

Defining

yi = 1 if x 2 [x i
, x

i+1] and yi = 0 otherwise, for i = 1, . . . , k � 1

minx2[x1,xk ] f (x) can be formulated as

min
Pk

i=1 λi f (x
i )

s.t.
Pk

i=1 λi = 1
Pk�1

i=1 yi = 1

λ1  y1,λk  yk�1

λi  yi�1 + yi i = 2, . . . , k � 1

λi � 0, yi 2 {0, 1} i = 1, . . . , k

N.B.: If yj = 1 then λi = 0 for all i , 1 ≤ i ≤ n, different from j or j + 1.
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5) Modeling with exponentially many constraints

Example 6: Asymmetric Traveling Salesman Problem (ATSP)

Given

a complete directed graph G = (V ,A) with n = |V | nodes

a cost cij 2 R for each arc (i , j) 2 A (in case cij = 1)

determine a Hamiltonian circuit (tour), i.e., a circuit that visits exactly once each node,
of minimum total cost.

Illustration:

(n � 1)! Hamiltonian circuits

ATSP is NP-hard.
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Applications: logistics, microchip manufacturing, scheduling, (DNA) sequencing,...

Also symmetric TSP version with undirected graph G .

Website: http://www.math.uwaterloo.ca/tsp/

Many variants with

- time windows (earliest and latest arrival time)

- precedence constraints

- capacity constraint

- several vehicles (”Vehicle Routing Problem” – VRP)

- ...
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Two ILP formulations:

Variables: xij = 1 if (i , j) is included in
with (i , j) 2 A

min
P

(i,j)2A cijxij

s.t.
P

j2V :j 6=i xij = 1 8i (2)
P

i2V :i 6=j xij = 1 8j (3)
P

(i,j)2δ+(S) xij � 1 8 S ⇢ V , S 6= ; (4)

xij 2 {0, 1} 8(i , j) 2 A

where
(2) and (3) are the assignment constraints,

δ
+(S) = {(i , j) 2 A : i 2 S , j 2 V \ S},

(4) are the cut-set inequalities.

Observation: number of constraints (4) is exponential in n.
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Alternative ILP formulation

Substitute cut-set inequalities with the subtour elimination inequalities:

X

(i,j)2E(S)

xij  |S |� 1 8 S ✓ V , 2  |S |  n � 1 (5)

where E(S) = {(i , j) 2 A : i 2 S , j 2 S} for S ✓ V .

Illustration:
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6) Disjunctive constraints

Binary variables allow to impose disjunctive constraints such as:

either a1x  b1 or a2x  b2

with x 2 R and 0  x  u, where u is an upper bound vector.

Illustration:

Introduce yi 2 {0, 1} for each aix  bi , with 1  i  2, and consider constraints:

aix � bi  M(1� yi ) for i = 1, 2

y1 + y2 = 1

yi 2 {0, 1} for i = 1, 2

0  x  u

where M � max1i2{aix � bi : 0  x  u}.

If y1 = 1 then x satisfies a1x ≤ b1 while a2x ≤ b2 is inactive, and conversely if y2 = 1.
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Example 7: Scheduling problem (see Computer Lab 0)

Given

m machines and n products

for each product j , deadline dj and processing time pjk on machine k, with
1  k  m,

determine a schedule which minimizes the time needed to complete all products, while
satisfying all deadlines.

Products cannot be processed simultaneously on the same machine.
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7) Linearization of products of variables

- Product of two (several) binary variables:

z = y1 · y2, with yi 2 {0, 1} for i = 1, 2 and z 2 {0, 1}, can be replaced by

z  y1

z  y2

z � y1 + y2 � 1.

- Product of a binary variable and a bounded continuous variable:

z = x · y , with x 2 [0, u], y 2 {0, 1} and z 2 [0, u], can be replaced by

0  z  uy

z  x

z � x � (1� y)u.

Question: If x1 and x2 are continuous and bounded, can x1 · x2 be exactly linearized?
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3.2 Strong and ideal formulations

In linear optimization, good formulations contain a small number of variables n and
constraints m because the complexity of algorithms grows polynomially in n and m.

The choice of the formulation does not critically affect the possibility of solving LPs.

For ILPs and MILPs, the choice of the formulation is crucial.
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3.2.1 Alternative and strong formulations

Definition: Given any MILP

zMILP = min c t1x + c t2y

s.t. A1x + A2y � b

x � 0

y � 0 integer

its linear programming (LP) relaxation is

zLP = min c t1x + c t2y

s.t. A1x + A2y � b

x � 0, y � 0,

where yj 2 Z are omitted for all j .

If yj 2 Z with 0  yj  uj , then in LP relaxation yj 2 [0, uj ].

Illustration:
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Obviously XMILP ✓ XLP where

XMILP = {(x , y) 2 R
n1 ⇥ Z

n2 : A1x + A2y � b, x � 0, y � 0}

XLP = {(x , y) 2 R
n1 ⇥ R

n2 : A1x + A2y � b, x � 0, y � 0}

Proposition: For any minimization MILP, we have:

zLP  zMILP,

if optimal solution (x∗

LP , y
∗

LP
) of LP relaxation is integer (feasible for MILP), it is

also optimal for MILP.

For maximization problems, zMILP  zLP.
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Definition:

A polyhedron P = {(x , y) 2 R
n1+n2 : A1x + A2y � b, x � 0, y � 0} ✓ R

n1+n2 is a

formulation for a mixed integer set X ✓ R
n1 ⇥ Z

n2 if and only if X = P \ (Rn1 ⇥ Z
n2).

Illustrations:

Observation: Any MILP admits an infinite number of alternative formulations.
Equivalent from MIP point of view but different LP relaxations.
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Examples:

1) Two alternative formulations for TSP (cut-set or subtour-elimination constraints).

2) Original formulation for UFL:

min
Pm

i=1

Pn

j=1 cijxij +
Pn

j=1 fjyj

s.t.
Pn

j=1 xij = 1 8i 2 M
Pm

i=1 xij  myj 8j 2 N (1)

yj 2 {0, 1} 8j 2 N

0  xij  1 8i 2 M, j 2 N.

Alternative formulation: n linking constraints (1) are substituted with mn ones

xij  yj 8i 2 M, j 2 N. (2)
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Definition:

Given a mixed integer set X ✓ R
n1 ⇥ Z

n2 and two formulations P1 and P2 for X , P1 is
stronger than P2 if P1 ⇢ P2.

The lower bound provided by LP relaxation of P1 is not smaller (weaker) than that of P2:

zMILP = min{c t1x + c
t
2y : (x , y) 2 X}

� min{c t1x + c
t
2y : (x , y) 2 P1}

� min{c t1x + c
t
2y : (x , y) 2 P2}.

Two formulations may not be comparable.
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Examples:

1) Uncapacitated Facility Location (UFL)

Proposition: The LP relaxation of the MILP formulation with constraints xij  yj is
stronger than that with aggregated constraints

Pm

i=1 xij  myj .

Proof:

P1 =
n

(x , y) ∈ R
mn+n :

Pn
j=1 xij = 1 ∀i , xij ≤ yj ∀i∀j , 0 ≤ xij ≤ 1 ∀i∀j , 0 ≤ yj ≤ 1 ∀j

o

P2 =
n

(x , y) ∈ R
mn+n :

Pn
j=1 xij = 1 ∀i ,

Pm
i=1 xij ≤ myj ∀j , 0 ≤ xij ≤ 1 ∀i∀j , 0 ≤ yj ≤ 1 ∀j

o

Obviously P1 ⊆ P2.

Exhibit (x , y) ∈ P2 \ P1:

Suppose m = kn for some integer k ≥ 2, and let each depot serve k clients:

xij = 1 for i = k(j − 1) + 1, . . . , k(j − 1) + k with j = 1, . . . , n, and xij = 0 otherwise

yj = k/m for j = 1, . . . , n.
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2) Symmetric TSP (STSP)

STSP: Given undirected G = (V ,E) and cost ce for every e = {i , j} 2 E , determine a
Hamiltonian cycle of G (i.e., visiting each i 2 V exactly once) of minimum total cost.

Two alternative formulations:

min
P

e∈E cexe
s.t.

P
e∈δ(i) xe = 2 i 2 V (DEG)P
e∈δ(S) xe � 2 S ⇢ V , S 6= ; (CUT )

xe 2 {0, 1} e 2 E

where δ(S) = {{i , j} ∈ E : i ∈ S , j ∈ V \ S}, δ(i) = δ({i})

min
P

e∈E cexe
s.t.

P
e∈δ(i) xe = 2 i 2 V (DEG)P

e∈E(S) xe  |S |� 1 S ⇢ V , |S | � 2 (SEC)

xe 2 {0, 1} e 2 E ,

where E(S) = {{i , j} ∈ E : i ∈ S , j ∈ S}.

(DEG), (SEC) and (CUT) are, respectively, the degree, subtour-elimination and cut-set

constraints.
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Let Psec and Pcut be the polyhedra (feasible regions) of the respective LP relaxations.

Proposition: The two formulations are equally strong (Psec = Pcut).

See Exercise 2.3
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3.2.2 Ideal ILP formulations

Theorem (Meyer): Let X ✓ R
n1 ⇥ Z

n2 be mixed integer feasible set of any MILP with
rational coefficients, then conv(X ) is a rational polyhedron. Moreover, all extreme points
of conv(X ) belong to X .

For bounded integer X , intuitive and no need for rational coefficients assumption.

Consequence:
min{c tx : x 2 X} = min{c tx : x 2 conv(X )}

If we knew conv(X ) explicitly, we could solve the (M)ILP by solving a single Linear
Program!

Clearly feasible region P of LP relaxation of any formulation satisfies X ✓ conv(X ) ✓ P.
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Definition: Let X ✓ R
n1 ⇥ Z

n2 be any mixed integer feasible set, the ideal (perfect)
formulation for X is the polyhedron P ✓ R

n1+n2 with P = conv(X ).

Since it is often of exponential size or difficult to determine, we strive for strong formulations.

Examples:

1) Assignment problem

Natural ILP formulation:
min

Pn

i=1

Pn

j=1 cijxij

s.t.
Pn

i=1 xij = 1 8j
Pn

j=1 xij = 1 8i

xij 2 {0, 1} 8i , 8j

Proposition:

P = {x 2 R
n2 :

Pn

i=1 xij = 1 8j ,
Pn

j=1 xij = 1 8i , 0  xij  1 8i , j}

is an ideal formulation for the Assignment problem.

Proof later
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2) Perfect Matching problem (PM)

PM: Given an undirected G = (V ,E) with n = |V | even and a cost ce for each
e = {i , j} 2 E , determine a perfect matching (i.e., subset of edges without common
nodes but incident to all nodes) of minimum total cost.

Illustration:

Natural ILP formulation:

min
P

e∈E cexe

s.t.
P

e∈δ(i) xe = 1 8i 2 V

xe 2 {0, 1} 8e 2 E ,

where xe = 1 if e is selected, and xe = 0 otherwise.

Edoardo Amaldi (PoliMI) Optimization Academic year 2023-24 12 / 24



Clearly all x 2 {0, 1}|E | corresponding to perfect matchings satisfy:

X

e∈δ(S)

xe � 1 8S ⇢ V with |S | odd.

Theorem (Edmonds):

PM = {x 2 R
|E | :

P
e∈δ(i) xe = 1 8i 2 V ,

P
e∈δ(S) xe � 1 8S ⇢ V , |S | odd,

0  xe  1 8e 2 E}

is an ideal formulation for the Perfect Matching problem.
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3.2.3 Extended formulations

Alternative formulations can use additional and/or different variables.

Definition: The formulations including additional variables, are extended formulations.

Example: Uncapacitated Lot-Sizing (ULS)

One type of product and n periods.

Given

ft fixed cost for producing during period t

pt unit production cost in period t

ht unit storage cost in period t

dt demand in period t

determine a production plan for the next n periods that minimizes the total costs, while
satisfying demands.

Assumption: stock is empty at the beginning and at the end.
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MILP formulation

Variables:

xt = amount produced in period t, with 1  t  n

yt = 1 if production occurs in period t and yt = 0 otherwise, with 1  t  n

st = amount in stock at the end of period t, with 0  t  n

min
Pn

t=1 ptxt +
Pn

t=1 htst +
Pn

t=1 ftyt

s.t. st = st−1 + xt � dt 8t

xt  Myt 8t

s0 = 0, sn = 0 8t

st , xt � 0 8t

yt 2 {0, 1} 8t

where M > 0 is large enough, e.g., M >
Pn

t=1 dt + sn.

N.B.: Since st =
Pt

i=1 xi + s0 −
Pt

i=1 di , storage variables st can be deleted.

Extension with minimum lot sizes.
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MILP extended formulation

Variables:
For explicit extended formulation: xi =

Pn
t=i wit and si =

Pi
l=1

Pn+1
t=i+1 wlt for each period i .
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3.2.4 Comparison between formulations

Consider an ILP formulation

min{c tx : x 2 P1 \ Z
n}

with P1 ✓ R
n, and an extended formulation

min{c t(x ,w) : (x ,w) 2 P2 \ (Zn ⇥ R
n0)}

with P2 ✓ R
n ⇥ R

n0 .

Definition: Given a polyhedron P ✓ R
n ⇥R

n0 , the orthogonal projection of P onto the
x-subspace R

n is the polyhedron projx(P) = {x 2 R
n : 9w 2 R

n0 s.t. (x ,w) 2 P }.

To compare P1 and extended formulation P2, we compare P1 and projx(P2).
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One way to determine the orthogonal projection of polyhedra onto subspaces:

Fourier-Motzkin elimination method (1827)

Goal: find a feasible solution of Ax � b with A 2 R
m×n.

Idea: At each iteration eliminate one variable xi (derive an equivalent linear system
without xi ), stop when a single variable is left.

Given Ax ≥ b, suppose we wish to eliminate xi .

The equivalent system without xi includes

all inequalities of Ax ≥ b in which xi does not appear,

the inequalities resulting from all the possible combinations of the upper and lower bounds
on xi implied by Ax ≥ b.
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Example: P defined by x1 +x2 ≥ 3 (3)

−
1

2
x1 +x2 ≥ 0 (4)

−x2 ≥ −2 (5)

Eliminate x2 (project P onto subspace of x1):

3− x1 ≤ x2

1

2
x1 ≤ x2

x2 ≤ 2

and obtain

3− x1 ≤ 2

1

2
x1 ≤ 2,

hence the projection [1, 4].

Eliminate x1 (project P onto subspace of x2): obtain 1 ≤ x2 ≤ 2, hence the projection [1, 2].

Complexity: Since at each step an inequality is derived for each pair of upper-lower
bounds, the number of constraints can grow exponentially in n.
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Comparing ULS formulations:

Consider the formulation P1:

st = st−1 + xt � dt 8t

xt  Myt 8t (6)

s0 = 0, st � 0, xt � 0, 0  yt  1 8t

and projx,s,y (P2), with P2 defined by
Pt

i=1 wit = dt 8t

wit  dtyi 8i , t, 1  i  t (7)

xi =
Pn

t=i wit 8i (8)

si =
Pi

l=1

Pn+1
t=i+1 wlt 8i (9)

wit � 0 8i , t, 1  i  t

0  yt  1 8t.

Easy to verify that projx,s,y (P2) ⇢ P1: e.g., the point xt = dt , yt = dt/M for all t is

a(n extreme) point of P1 but /2 projx,s,y (P2).

Proposition: P2 is the ideal formulation of ULS.
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3.2.5 Stronger extended formulations

Look for an extended formulation whose projection is a better approximation of the ideal
formulation.

Example: Fixed charge network flow problem (FCNF):

Given a directed G = (V ,A) with

for each (i , j) 2 A a fixed cost fij > 0, unit cost cij and a capacity uij ,

for each i 2 V a demand bi (bi < 0 sources, bi > 0 destinations) with
P

i∈V bi = 0,

determine a feasible flow of minimum total cost which satisfies all demands and capacity
constraints.

Illustration:

FCNF is NP-hard.
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Natural MILP formulation:

Variables:

xij = amount of flow through (i , j), for all (i , j) 2 A

yij = 1 if (i , j) is used and yij = 0 otherwise, for all (i , j) 2 A

min
P

(i,j)∈A(cijxij + fijyij)

s.t.
P

(h,i)∈δ�(i) xhi �
P

(i,j)∈δ+(i) xij = bi 8i 2 V (10)

0  xij  uijyij 8(i , j) 2 A (11)

yij 2 {0, 1} 8(i , j) 2 A

where δ
+(i) = {(i , j) 2 A : j 2 V } and δ

−(i) = {(h, i) 2 A : h 2 V }

LP relaxation yields poor bounds because of weak coupling between xijs and yijs via (11).
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Multi-commodity extended MILP formulation:

Idea: Suppose w.l.o.g. 9 single source node s (bs = �
P

i∈V\{s} bi ) and decompose the
flows according to their destinations.

Denote K = {i 2 V : bi > 0} ✓ V .

Define one ”commodity” for each k 2 K , with the flow variables xk
ij for all (i , j) 2 A.

Define dk
i = �bk if i = s, dk

i = bk if i = k, and dk
i = 0 otherwise.

... see Computer Lab 1

Significantly stronger formulation of FCNF with |K | times more variables/constraints.
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3.2.6 Remarks on the strength and size of formulations

Definition: A compact formulation is a formulation with a number
of variables/constraints polynomial w.r.t. the instance size.

Remark 1: A compact extended formulation can be much weaker than an alternative
exponential-size formulation.

Example: ATSP

To exclude subtours, instead of (SEC) one can add, for each i ∈ V , a variable ti representing the
”position” in which node i is visited in the tour and a set of constraints.

... see Computer Lab 1

Remark 2: A compact extended formulation can have a projection into the space of the
natural variables that is of exponential size.

Example: ATSP
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3.3 ”Easy” ILP problems and totally unimodular matrices

Generic ILP
min{c tx : Ax = b, x 2 Z

n
+} (1)

where A 2 Z
m⇥n with n � m, and b 2 Z

m.

P(b) = {x 2 R
n : Ax = b, x � 0} polyhedron of LP relaxation.

Assumption: rank(A)=m, i.e, 6 9 redundant constraints.

In general, optimal solutions of LP relaxation are far away from those of (1).

Illustration:

If all vertices of P(b) are integral, ideal formulation and just need to solve LP relaxation.
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According to Linear Programming theory:

Any LP min{c tx : Ax = b, x � 0} with a finite optimal solution has an
optimal vertex (extreme point).

To each vertex of P(b) corresponds (at least) one basic feasible solution

x = (xB , xN) = (B�1
b, 0),

where B is a basis of A, i.e., an m ⇥m non-singular submatrix of A.

Consider any basis B.

By partitioning columns of A into basic and non basic, Ax = b, x � 0 can be written as

BxB + NxN = b with xB � 0 and xN � 0,

and in canonical form:

xB = B�1b � B�1NxN with xB � 0 and xN � 0,

which emphasizes the basic feasible solution (xB , xN) = (B�1b, 0).
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Observation: If an optimal basis B of LP relaxation of (1) has det(B) = ±1,
then (xB , xN) = (B�1b, 0) is integral and also optimal for ILP (1).

Proof:

Only a sufficient condition for integrality of (xB , xN) = (B�1b, 0).

B�1b integral also if det(B) = 2 and all bi 2 Z are even.
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3.3.1 Totally unimodular matrices and optimal integer solutions

Definition: A 2 Z
m⇥n is totally unimodular (TU) if every squared submatrix has a

determinant �1, 0 or 1.

Clearly, if A is TU, aij 2 {�1, 0, 1} for all i and j .

Examples:

Recall: For any B 2 R
m⇥m, Laplace expansion along any row i , 1  i  m, is

det(B) =
Pm

j=1 bijαij , where αij = (�1)i+jdet(Bij ) are the cofactors of B.

Expansion also along any column j .
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Proposition:

• A is TU if and only if At is TU.

• A is TU if and only if (A | Im) is TU.

• A0 obtained from A by permuting/changing the sign of some columns/rows is TU
if and only if A is TU.

Theorem 1:

If A 2 Z
m⇥n TU, b integral and P(b) = {x 2 R

n : Ax = b, x � 0} 6= ;, then all
extreme points of P(b) are integral.

Proof: See observation.

From ILP point of view, if A is TU it suffices to solve the LP relaxation.
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Corollary:

If A 2 Z
m⇥n TU, b integral and

P(b) = {x 2 R
n : Ax � b, x � 0} 6= ;,

then all vertices of P(b) are integeral.

Proof*:

Let x̃ be any vertex of P(b).

First we show that (x̃ , s̃) with s̃ := Ax̃ � b is a vertex of

P0(b) := {(x , s) 2 R
n+m : Ax � s = b, (x , s) � 0}.

If not, there would exist two distinct (x1, s1) and (x2, s2) of P0(b) such that
(x̃ , s̃) = α(x1, s1) + (1� α)(x2, s2) for some α with 0 < α < 1.

Since s1 = Ax1 � b � 0 and s2 = Ax2 � b � 0, x1 and x2 belong to P(b).

Moreover, (x1, s1) 6= (x2, s2) would imply x1 6= x2 and hence x̃ = αx1 + (1� α)x2 could not be
a vertex of P(b).

Since A is TU, also (A | � Im) is TU. According to Theorem 1 for P0(b), (x̃ , s̃) is integral, in
particular x̃ .
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Proposition (Sufficient conditions):

A 2 Z
m⇥n is TU if

i) aij 2 {�1, 0,+1} for all i and j ,

ii) each column of A contains at most two nonzero coefficients,

iii) set I of all row indices of A can be partitioned into I1 and I2 such that,

for each column j with two nonzero coefficients, we have
P

i2I1
aij �

P
i2I2

aij = 0.

N.B.: If a column has two nonzero coefficients of the same (different) sign, their rows must

belong to different (same) subsets I1 and I2.

Examples of TU matrices (not) satisfying these conditions:
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Proof:
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Characterization of TU matrices

Theorem 2: A 2 Z
m⇥n is TU if and only if every I 0 ✓ I = {1, . . . ,m} of indices of the

rows of A can be partitioned into I 01 and I 02 such that

(
P

i2I 01
aij �

P
i2I 02

aij) 2 {�1, 0,+1} for every column j , with 1  j  n.

If A is TU it suffices to solve the LP relaxation.

Proposition: min{c tx : Ax = b, x 2 R
n
+} has an optimal integer solution for any

integer b for which it admits a finite optimal solution if and only if A is TU.

Given A and a basis B with det(B) 6= ±1, there always exists a LP

min{ctx : Ax = b, x 2 R
n
+} with a fractional optimal solution.
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3.3.2 Some ideal natural formulations

1) Assignment problem

Given n jobs and n machines with costs cij for all i , j 2 {1, . . . , n}, decide which job to
assign to which machine so as to minimize the total cost to complete all the jobs.

ILP formulation: min
Pn

i=1

Pn

j=1 cijxijPn

i=1 xij = 1 8j (2)
Pn

j=1 xij = 1 8i (3)

xij 2 {0, 1} 8i , 8j

where xij = 1 if job i is assigned to machine j , 1  i , j  n.

N.B.: In LP relaxation, xij � 0 8i , j suffice

Property: Constraints matrix (2)-(3) is TU.

Proof: In sufficient conditions, just take I1 = {1, . . . , n} and I2 = {n + 1, . . . , 2n}.

Consequence: All vertices of the LP relaxation are integral, and formulation is ideal.
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2) Transportation problem

Single type of product.

Given

m production plants (1  i  m)

n clients (1  j  n)

cij = unit transportation cost from plant i to client j

pi = maximum amount that can be produced (capacity) at plant i

dj = demand of client j

qij = maximum amount that can be transported from plant i to client j

determine a transportation plan so as to minimize total transportation costs while
satisfying all client demands and plant capacities.

Assumption:
Pm

i=1 pi �
Pn

j=1 dj
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Natural ILP formulation:

Variables: xij = amount of product transported from plant i to client j , with 1  i  m,
1  j  n

min
Pm

i=1

Pn

j=1 cijxijPn

j=1 xij  pi 8i (4)
Pm

i=1 xij � dj 8j (5)

xij  qij 8i , 8j (6)

xij � 0 integer 8i , 8j

Property: Constraints matrix (4)-(6) is TU.

Proof: Put problem in consistent inequality form by multiplying constraints (4) and (6) by �1.

Since matrix of capacity and demand constraints is TU, just apply Corollary and Proposition.

Consequence: If all pi , dj and qij are integer, every vertex is integral, and hence the
formulation is ideal.
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3) Minimum cost flow problem

Given directed G = (V ,A) with a capacity uij and a unit cost cij for each (i , j) 2 A, and
a ”demand” bi for each i 2 V (bi < 0 for sources, bi > 0 for destinations,

P
i2V

bi = 0),
determine a feasible flow of minimum total cost satisfying all bi .

Natutal ILP formulation:

min
P

(i,j)2A
cijxij

P
(h,i)2δ�(i) xhi �

P
(i,j)2δ+(i) xij = bi 8i 2 V (7)

xij  uij 8(i , j) 2 A (8)

xij � 0 integer 8(i , j) 2 A

Property: Constraints matrix (7)-(8) is TU.

Proof: The n ⇥ |A| node-arc incidence matrix of any directed G is TU since it contains exactly
one 1 and one �1 per column (take I1 = I and I2 = ;). ...
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Consequence: If all bi and capacities uij are integer, every extreme point is
integral, and the formulation is ideal.

Exercise:

Verify that the following problems are special cases of Min cost flow problem.

- Shortest path: Given directed G = (V ,A) with cost cij for each (i , j) 2 A, and two
prescribed nodes s and t, determine a minimum cost path from s to t.

- Maximum flow: Given directed G = (V ,A) with a capacity uij for each (i , j) 2 A, a

s and a sink t, determine a feasible flow of maximum value from s to t.
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Ad hoc more efficient algorithms

For the three above problems, the formulations are ideal but there exist better
polynomial-time algorithms which exploit the problem’s structure.

Rounding optimal solutions of LP relaxation

In general, when constraint matrix of ILP is not TU, x⇤

LP is fractional.

Rounding x⇤

LP does rarely work because

rounded solutions are often infeasible for ILP,

the error with respect to w.r.t. an optimal ILP solution may be arbitrarily large.

In general, rounding x⇤

LP yields a good approximation of x⇤

IP only when the components
of x⇤

LP have large values.

Edoardo Amaldi (PoliMI) Optimization A.Y. 2023-24 15 / 15



3.4 Relaxations, heuristics and bounds

Generic Discrete Optimization problem

z
⇤ = min{c(x) : x 2 X}

and an optimal solution x⇤ 2 X .

Algorithms generate: a decreasing sequence of upper bounds u1 > . . . > uk � z⇤ and
an increasing sequence of lower bounds l1 < . . . < lk  z⇤.

Termination criterion: (uk � lk)  ε for ε > 0.

Primal bounds (min)

Any x 2 X yields an upper bound u = c(x) � z⇤.

Even finding an x 2 X may be challenging (NP-hard).

Dual bounds (min)

Lower bounds are obtained via a relaxation.
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Quality guarantee:

If xk is best feasible solution found so far and lk best dual bound,

(c(xk)� lk)  ε

guarantees (c(xk)� z⇤)  ε.

For maximization problems, primal (dual) bounds are lower (upper) bounds.
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Definition: Given

(P) z
⇤ = min{c(x) : x 2 X ✓ R

n},

a problem
(RP) z̃ = min{c̃(x) : x 2 X̃ ✓ R

n}

is a relaxation of (P) if

X ✓ X̃

c̃(x)  c(x) for each x 2 X .

Proposition: If (RP) is a relaxation of (P) then z̃  z⇤.

Proof: Let x⇤ be an optimal solution of (P), then x⇤ ∈ X ⊆ X̃ and c̃(x⇤) ≤ c(x⇤) = z⇤.

Since x⇤ ∈ X̃ , we have z̃ ≤ c̃(x⇤).
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Proposition: Let x⇤
RP be an optimal solution of (RP). If x⇤

RP is feasible for (P)

(x⇤
RP 2 X ) and c̃(x⇤

RP) = c(x⇤
RP), then x⇤

RP is also optimal for (P).

Illustrations:

Aim at tradeoff between the bound quality (z⇤� z̃) and the computational load of (RP).
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3.4.1 Different types of relaxations

1) Linear programming relaxation

For any (M)ILP

zILP = min c t1x + c t2y

A1x + A2y � b

x � 0, y � 0, integer

and its LP relaxation

zLP = min c t1x + c t2y

A1x + A2y � b

x � 0, y � 0,

we have zLP  zILP . The stronger the formulation, the tighter the dual bound zLP .
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2) Relaxation by elimination

Simply delete one or more constraints.

Examples:

1) Asymmetric TSP

Delete the subtour elimination (cut-set) constraints.

2) Multi-dimensional binary knapsack problem

max
Pn

j=1 pjxj

s.t.
Pn

j=1 wijxj  Wi 8i 2 {1, 2, . . . ,m} (1)

xj 2 {0, 1} 8j 2 {1, 2, . . . , n} (2)

Delete all but one constraint.

Very weak relaxations.
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3) Surrogate relaxation (SR)

Idea: Replace a subset of constraints with the surrogate constraint, i.e., their linear
combination with multipliers λi � 0.

Example: Multiple binary knapsack

Given m knapsacks of capacities Wi , select m disjoint subsets of items fitting in the
knapsacks so as to maximize total profit.

zmKP = max
Pm

i=1

Pn

j=1 pjxij

s.t.
Pn

j=1 wjxij  Wi 8i 2 {1, 2, . . . ,m} (3)
Pm

i=1 xij  1 8j 2 {1, 2, . . . , n} (4)

xij 2 {0, 1} 8i , 8j (5)

Surrogate relaxation of (3):

zS(λ) = max
Pm

i=1

Pn

j=1 pjxij

s.t.
Pm

i=1 λi

Pn

j=1 wjxij 
Pm

i=1 λiWi (6)
Pm

i=1 xij  1 8j 2 {1, 2, . . . , n} (7)

xij 2 {0, 1} 8i , 8j (8)

single knapsack with m copies of each item j and at most one copy can be selected.
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zS(λ) = max
Pm

i=1

Pn

j=1 pjxij

s.t.
Pm

i=1

Pn

j=1(λiwj)xij 
Pm

i=1 λiWi (9)
Pm

i=1 xij  1 8j 2 {1, 2, . . . , n} (10)

xij 2 {0, 1} 8i , 8j (11)

Since for each item j a copy i with smallest λi is more convenient, it is a standard binary
knapsack problem with capacity

Pm

i=1 λiWi .

Clearly zmKP  zS(λ).

Look for smallest upper bound by solving surrogate dual:

min
λ�0

zS(λ)
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4) Lagrangian relaxation (LR)

Often LP relaxation and relaxation by elimination yield weak bounds (e.g., TSP, UFL).

Idea: Eliminate the ”difficult” constraints and add, for each one of them, a term in the
objective function with a multiplier u which penalizes its violation.

For max: terms ≥ 0 for all feasible solutions.

Example: Multiple binary knapsack

zmKP = max
Pm

i=1

Pn

j=1 pjxij

s.t.
Pn

j=1 wjxij  Wi 8i 2 {1, 2, . . . ,m}
Pm

i=1 xij  1 8j 2 {1, 2, . . . , n} (12)

xij 2 {0, 1} 8i , 8j

Lagrangian relaxation of (12):

zL(u) = max
Pm

i=1

Pn

j=1 pjxij +
Pn

j=1 uj(1�
Pm

i=1 xij) (13)

s.t.
Pn

j=1 wjxij  Wi 8i 2 {1, 2, . . . ,m} (14)

xij 2 {0, 1} 8i , 8j (15)

with uj � 0 for all j , so that zmKP  zL(u) for every u � 0.
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Since
m
X

i=1

n
X

j=1

pjxij +

n
X

j=1

uj(1�

m
X

i=1

xij) =

m
X

i=1

n
X

j=1

(pj � uj)xij +

n
X

j=1

uj ,

in Lagrangian subproblem (13)-(15) each item j has profit p̃j = pj � uj , weight wj and
can be inserted in several knapsacks.

Equivalent to m independent binary knapsack problems: zL(u) =
Pm

i=1 zi +
Pn

j=1 uj where

zi = max
Pn

j=1 p̃jxj

s.t.
Pn

j=1 wjxj  Wi (16)

xj 2 {0, 1} 8j 2 {1, 2, . . . , n}. (17)

Lagrangian dual:
min
u�0

zL(u).

LR discussed in detail later.
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Simple dominance relations among relaxations

Compare the quality of three relaxations in terms of dual bound (relaxing same
constraints with optimal multipliers).

Proposition: SR and LR dominate the relaxation by elimination.

The latter relaxation is equivalent to take λ = 0 in SR and u = 0 in LR.

Proposition: SR dominates LR.

LR can be viewed as the Lagrangian relaxation of the surrogate relaxation obtained by relaxing

the aggregated (surrogate) constraint with u = 1.

In practice LR is widely used because

Lagrangian subproblem is easier to solve than surrogate one,

9 efficient methods to determine ”good” Lagrangian multipliers, unlike for SR.
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5) Combinatorial relaxations: Symmetric TSP

Definition: Given undirected G = (V ,E) with V = {1, . . . , n}, a 1-tree is a subgraph
containing two edges incident to node 1, and the edges of a spanning tree on {2, . . . , n}.

Illustration:

Clearly { Hamiltonian cycles of G } ⊂ { 1-trees of G }

Exact algorithm for minimum cost 1-tree:

Recall Kruskal’s greedy algorithm:

Consider edges in the order of non-decreasing cost.

At each step, discard edge if it creates a cycle with previously selected edges.

Stop when selected edges ”cover” all the nodes.

Edoardo Amaldi (PoliMI) Optimization Academic Year 2022-23 12 / 22



3.4.2 Heuristics for primal bounds

1) Greedy methods

Construct a feasible solution piece by piece.

At each step, select an available ”piece” that yields the best ”local profit”, without reconsidering

previous choices.

Example 1: Binary Knapsack Problem

zILP = max 16x1 + 22x2 + 12x3 + 8x4
s.t. 5x1 + 7x2 + 4x3 + 3x4  14

x1, . . . , x4 2 {0, 1}

Order items by non-increasing profit-weight ratios (pj/wj ) :

x1 x2 x3 x4
pj 16 22 12 8
wj 5 7 4 3
pj/wj 3.2 3.14 3 2.7

Consider items in that order, select (xj = 1) those not violating the residual capacity, skip the

others (xj = 0).
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Feasible solution of greedy procedure: x = (1, 1, 0, 0) with zgreedy = 38.

Optimal integer solution: x⇤ = (0, 1, 1, 1) with zILP = 42.

Clearly zgreedy  zILP .

How bad can a greedy solution be w.r.t. an optimal one?

Worst case example:
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Example 2: Symmetric TSP with complete graph

Nearest neighbor heuristic: Start from any node, at each step insert the closest node
not yet visited, come back to the starting node.

Complexity: O(n2), where n = |V |.

For animation see https://www.youtube.com/watch?v=fFfizorMPuk

Empirical performance: on TSPLIB(rary) instances it yields tours whose average cost is
about 1.26 times that of optimal tours.

Worst-case performance: there are instances for which the found tours are arbitrarily
worse than the optimal ones.
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2) Local search methods

Generic
min
x2X

c(x)

and try to iteratively improve a current feasible solution.

Define, for any feasible solution x , a neighborhood N(x), i.e., a subset of ”nearby”
feasible solutions.

Start from an initial x0.

At iteration k:

- find a best solution x 0 in N(xk)

- if c(x 0) < c(xk) then xk+1 := x 0 and perform iteration k + 1,

otherwise return xk which is a local minimum w.r.t. N(x).
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Example: 2-opt heuristic for Symmetric TSP

Given G = (V ,E) and a current tour H ✓ E .

For any nonadjacent e1 and e2 in H, try to replace them with the two (unique)
alternative edges recombining the two paths into a new tour H 0.

Illustration:

N(H) = { tours obtainable from H with such a ”2-interchange” }.

If c(H 0) < c(H) then set H = H 0, otherwise H is a local minimum w.r.t 2-opt
neighborhood.

For animation see: https://www.youtube.com/watch?v=UGGPZnAUjPU

http://www.youtube.com/watch?v=SC5CX8drAtU

Complexity: O(n2) with n = |V |.
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Also k-opt for k = 3, with complexity O(n3).

Empirical performance: on TSPLIB instances 2-opt (3-opt) provides tours about
1.06 (1.04) times the optimum.
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Metaheuristics (for minimization problems)

To try to escape from local optima and improve upon local search heuristics.
E.g., tabu search, simulated annealing or genetic algorithms.

Tabu Search:

Idea: Allow moves to the best neighbor even if it has a worse objective function value.
Use a tabu list to avoid cycling.

Start from feasible x0.

At iteration k, xk+1 := x 0 where x 0 is the best solution in N(xk), even if c(x 0) � c(xk).

Prevent to undo recent moves for a certain number of iterations.
Once a move is peformed the opposite move is made tabu for the l successive iterations.

Best solution found is stored and returned after a prescribed maximum number of
iterations.
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Example: Uncapacitated Facility Location (UFL) problem

m clients (i 2 M) and n depots (j 2 N)

For any S ✓ N, feasible solution where the depots with indices in S are open and all
clients are served by the ”cheapest” open depot.

Corresponding objective function value:

c(S) =

m
X

i=1

min
j2S

cij +
X

j2S

fj

Simple neighborhood:

N(S) = {T ✓ N : T = S [ {j}, j 62 S or T = S \ {j}, j 2 S}
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m = 6 clients, n = 4 depots

(cij) =

0

B

B

B

B

B

B

@

6 2 3 4
1 9 4 11
15 2 6 3
9 11 4 8
7 23 2 9
4 3 1 5

1

C

C

C

C

C

C

A

f = (21, 16, 11, 24)t

Initial solution: S0 = {1, 2} of cost c(S0) = 61.

Three iterations of Local search (Tabu Search):...
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3.5 Branch and Bound – Review

Generic Discrete Optimization problem:

(P) z = max{c(x) : x 2 X}.

Branch and Bound is a general semi-enumerative approach (Land and Doig 1960) to
explore the feasible region X .

See chapter 7 of L. Wolsey, Integer Programming, Wiley 1998, p. 91-111.

Two main components:

”divide and conquer” strategy (branching)

implicit enumeration exploiting bounds (bounding).

By exploiting bounds

- it avoids explicitly exploring certain subregions of X

- it is guaranteed to find an optimal solution.
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1) ”Divide and conquer” strategy

Idea: Recursively partition X so as to reduce the solution of (P) to the solution of a
sequence of smaller/easier subproblems.

Observation: Let X = X1 [ . . . [ Xk be a partition of X in k subsets (Xi \ Xj = ; for
each pair of indices i 6= j) and

z
i = max{c(x) : x 2 Xi}

for 1  i  k. Obviously z = max1≤i≤k z
i .

Partition of X or Xi ⌘ branching operation.

Procedure represented by a enumeration tree with root node associated to X and other
nodes to the subsets Xi .

Examples:

- X ⊆ {0, 1}3 – binary branching

- X set of all Hamiltonian circuits of a given digraph G = (V ,A) – multiway branching
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2) Implicit enumeration

Explicit enumeration is too heavy computationally, recursive partition of the feasible
region does not suffice.

Idea: Exploit upper and lower bounds (primal and dual bounds) on z i , with 1  i  k,
in order to avoid explicit exploration of some subregions X .

Observation: Let X = X1 [ . . . [ Xk be a partition of X and

z
i = max{c(x) : x 2 Xi}

for 1  i  k.

Moreover, let l i be a lower bound and ui an upper bound on z i , namely l i  z i  ui .

Then l = max1≤i≤k l
i is a lower bound and u = max1≤i≤k u

i is an upper bound on z ,
that is l  z  u.
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Pruning criteria

Cases in which primal and dual bounds for i-th subproblem can be used to avoid
exploring (discard) Xi (to prune the corresponding node of the B&B tree):

Optimality criterion: If ui = li , no need to further explore Xi since we found an
optimal solution in Xi of value z i = ui = li .

Bounding criterion: If the upper bound ui is lower than

- the objective function value LB of the best solution xLB found so far
or
- any lower bound lj for j 6= i ,

no need to explore Xi because it cannot contain any better feasible solution.

Feasibility criterion: Xi = ;

Four examples of subproblems (node) configurations, including one whose feasible region must

be further explored.

If a subproblem is not ”solved”, recursively generate subproblems (branching step).
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Main ingredients of Branch and Bound method (max problems)

• Upper bounds: Efficient method to determine a good quality dual bound u on z .

• Lower bounds: Efficient heuristic to look for a feasible solution x̃ with a value c(x̃),
which provides a good lower bound c(x̃) on z .

• Branching rule: Procedure to (recursively) partition the feasible region X into smaller
subregions.

To be stored and updated:

- list L of active subproblems with lower and upper bounds on z i : l i  z i  ui ,

- global upper bound UB on z ,

- global lower bound LB on z provided by the best feasible solution xLB found so far.
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General method, we ”just” need to specify:

1 how to choose the next subproblem (active node) to be ”processed”

2 how to generate the subproblems of a given subproblem (the ”children” nodes)

3 how to efficiently compute the primal and dual bounds.

The performance of a Branch-and-Bound algorithm strongly depends on the efficiency of
the branching rule and the quality of primal and dual bounds.

A Branch-and-Bound approach is applicable to MILPs and to Nonlinear Optimization
problems.
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3.5.1 Branch and Bound for ILP problems

Find an optimal solution x∗
ILP of

zILP = max{c tx : Ax = b, x � 0 integer}. (1)

Solve its linear relaxation and let x∗
LP be an optimal solution of value zLP .

Obviously zILP = c tx∗
ILP  zLP = c tx∗

LP .

If x∗
LP is integral, it is also optimal for (1). Otherwise x∗

LP is fractional.

Branching

If x∗
LP is not integral, choose a fractional component x∗

h and generate the two suproblems:

z
1
ILP = max{c tx : Ax = b, xh  bx∗

h c, x � 0 integer}

z
2
ILP = max{c tx : Ax = b, xh � bx∗

h c+ 1, x � 0 integer}

with the corresponding subregions X1 and X2 of X , which are exhaustive and mutually
exclusive.

Clearly zILP = max{z1ILP , z
2
ILP}.
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Recursive process: solve the linear relaxation of each subproblem and, if needed, carry
out a branching step.

Bounding

Consider the i-th subproblem with feasible subregion Xi .

Solve its linear relaxation, let x∗
LP be an optimal solution and z iLP its value.

Clearly, if all ci s are integer, every feasible solution of the ILP in Xi has value  bz iLPc.

In Branch and Bound, branching and bounding operations are alternated, while storing
and updating the best feasible solution found.

We need to decide:

1 criterion to select the next subproblem (node) to explore,

2 how to generate the ”children” nodes for the node under consideration (choice of
the branching variable),

3 heuristic to determine the lower bounds on the optimal objective function value.
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1. Choice of the subproblem (node) to be processed

Depth first search strategy (”deepest” node first): easy to implement but costly if
wrong choice.

Best bound first strategy (most ”promising” node first): tend to generate less
nodes but the subproblems are less constrained (we rarely update the best solution
found so far).

2. Choice of the fractional variable for branching

Branching first on a fractional variable whose fractional part is closest to 0.5 (in an
attempt to generate two subproblems that are ”equally” constrained) is often not
the best choice.

Strong branching (”estimate” the bound improvement if branching on several
candidate fractional variables, and branch w.r.t. the best one) is costly but effective
for some hard instances.

Edoardo Amaldi (PoliMI) Optimization Academic year 2022-23 9 / 11



Exponential example for Branch and Bound:

Let n be an odd positive integer and consider the ILP problem:

max �xn

s.t. x0 + 2
Pn

j=1 xj = n

0  xj  1 8j 2 {0, 1, 2, . . . , n}

xj 2 Z
+ 8j 2 {0, 1, 2, . . . , n}.

It can be verified that, when Branch and Bound is applied to this ILP instance, at least

2
n−1
2 ILP subproblems are inserted in the list L.
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Example 1:

Find an optimal solution of the ILP

max 4x1 − x2

s.t. 4x1 + 2x2 ≥ 19

10x1 − 4x2 ≤ 25

x2 ≤ 9
2

x1, x2 ∈ Z
+

with the Branch and Bound method by solving graphically the linear relaxation of the
subproblems. Branch first with respect to x1.

Example 2:

Solve the binary knapsack problem

max 10x1 + 12x2 + 5x3 + 7x4 + 9x5
s.t. 5x1 + 8x2 + 6x3 + 2x4 + 7x5 ≤ 14

x1, . . . , x5 ∈ {0, 1}

with the Branch and Bound method. Use a simple greedy heuristic to determine the optimal

solutions of the linear relaxations.
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3.6 Cutting plane methods

Generic ILP
min{ c tx : x 2 X = {x 2 Z

n
+ : Ax  b} }

with rational A and b.

An ideal formulation always exists (Meyer’s theorem). But for NP-hard problems, it is
unknown and/or it contains a huge number of constraints.

Idea: Improve initial formulation (approximation of conv(X )) by adding valid inequalities.

Definition: π
tx  π0 is a valid inequality for X ✓ Rn if πtx  π0 for each x 2 X .

Illustration:
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Use of valid inequalities:

add them a priori

generate them as needed – via a cutting plane method.

1) Addition a priori

Advantage: Branch and Bound method with stronger formulation is more efficient

(tighter dual bounds).

Example: Given weak UFL formulation with
P

i2M xij  myj 8j 2 N, add stronger

xij  yj , 8i 2 M, j 2 N.

Disadvantage: If huge number of valid inequalities, the LP relaxation is extremely

heavy and/or standard Branch and Bound is impossible.
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2) Cutting plane methods

Generic ILP:
min{c tx : x 2 X = P \ Z

n}

where P = {x 2 Rn
+ : Ax  b} is the feasible region of LP relaxation.

A family F of inequalities πtx  π0 valid for X , (π,π0) 2 F .

Often |F| is very large (e.g. cut-set for ATSP).

Definition: Given x 0 2 P with x 0 62 X , a cutting plane is an π
tx  π0 s.t.

π
tx  π0 is valid for X = P \ Zn

π
tx 0 > π0

Illustration:
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Idea of cutting plane methods:

No need for conv(X ), iteratively add cutting planes providing a good description around
x⇤

ILP , i.e., bringing it out as optimal vertex of LP relaxation polyhedron.

Illustration:

Separation problem:

Given any x 0 /2 X and a family F of valid inequalities for X , find one which separates x 0

from conv(X ) or establish that no such cutting plane exists.

Illustration:

Example: Gomory fractional cutting planes for ILPs – see Foundations of O.R. and 3.6.3.
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Cutting plane method

Initialization P 0 := P = {x 2 Rn
+ : Ax  b}

1 Solve current LP relaxation min{c tx : x 2 P 0} and let x⇤

LP be an optimal solution.

2 IF x⇤

LP 2 Zn THEN terminate because x⇤

LP is also optimal for ILP

ELSE Solve the separation problem for x⇤

LP , F and X = P 0 \ Zn

IF π
tx  π0 is found THEN P 0 := P 0 \ {x 2 Rn : πtx  π0} and go

back to (1).

ELSE stop

Observation: If x⇤

LP is not integer, P 0 is anyway stronger than P.
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3.6.1 Simple valid inequalities

1) Binary set

X = {x 2 {0, 1}5 : 3x1 � 4x2 + 2x3 � 3x4 + x5  �2}

Since x2 = x4 = 0 infeasible, x2 + x4 � 1 is valid.

Since x1 = 1 and x2 = 0 infeasible, x1  x2 is valid.

2) Mixed 0-1 set

X = {(x , y) : x  cy , 0  x  b, y 2 {0, 1}} with c > b

Illustration: c = 5 and b = 2

x  by is valid and, with x � 0 and y  1, describe conv(X ).
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3) Combinatorial set

Maximum Matching problem: Given undirected G = (V ,E) with profit pe 2 R for each

e = {i , j} 2 E , determine a matching, i.e., a subset of edges without common nodes, of
maximum total profit.

Illustration:

X = {x 2 {0, 1}|E | :
P

e2δ(i) xe  1, i 2 V } all incidence vectors of matchings in G

For any S ✓ V with |S | odd and |S | � 3,

X

e2E(S)

xe 
|S |� 1

2

is valid for X .
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3.6.2 Chvátal cutting planes for ILP

Generate valid inequalities via linear combination and rounding.

Integer rounding principle: Given X = {x 2 Z : x  b} where b 2 Q \ Z, then
x  bbc is valid for X .

Example 1:

X = {(x1, x2)
t 2 Z2

+ : �x1 + 2x2  4, �x1 � 2x2  �3, 1  x1  3}

By adding �x1  �1 and �x1 + 2x2  4 multiplied by 1/2, we have: �x1 + x2  3/2.

Then
�x1 + x2  b3/2c = 1

is valid for X and needed to describe conv(X ).
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Chvátal-Gomory (CG) procedure:

Consider X = P \ Zn with P = {x 2 Rn
+ : Ax  b}

X = {x 2 Zn
+ :

Pn

j=1 Ajxj  b} where Aj is j-th column of A

1) Choose u 2 Rm
+ and consider

Pn

j=1(u
tAj)xj  utb

2) Since butAjc  utAj and xj � 0,

nX

j=1

but
Ajcxj  u

t
b

is valid for P and for conv(X ) and X .

3) Since xj 2 Zn
+, the stronger

nX

j=1

but
Ajcxj  but

bc

is valid for conv(X ) and X (but not necessarily for P).
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Example 2: Matching polytope

Given an undirected G = (V ,E) and X = {x 2 {0, 1}|E | :
P

e2δ(i) xe  1, i 2 V }.

Proposition 1: For any S ✓ V with |S | odd and |S | � 3,

X

e2E(S)

xe 
|S |� 1

2

is a Chvátal-Gomory inequality w.r.t. the linear description

X

e2δ(i)

xe  1 8i 2 V (1)

xe � 0 8e 2 E . (2)
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Proof:

Consider any S ✓ V with |S | � 3.

Linear combination of (1) with ui = 0.5 for i 2 S and ui = 0 for i 62 S , yields

X

e2E(S)

xe +
1

2

X

e2δ(S)

xe 
|S |

2

which is valid for X .

Since xe � 0 and xe 2 Z for each e 2 E , also

X

e2E(S)

xe  b
|S |

2
c (3)

is valid for X .

If |S | is even, (3) is implied by (1) for i 2 S and by (2).

If |S | is odd, b
|S|
2
c =

|S|�1
2

and (3) is not implied.
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Theorem 1 (Chvátal): Any valid inequality for any X can be obtained by applying
Chvátal-Gomory procedure a finite number of times.

Proof for case X ✓ {0, 1}n cf. L. Wolsey, Integer Programming, Wiley 2021, p. 145-146

Given any fractional extreme point x⇤

LP of P, 9 u � 0 such that the CG inequality

butAcx  butbc is valid for X and violated by x⇤

LP .
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Definition: Denote by A1x  b1 all inequalities obtainable by varying u in Rm
+.

P1 = {x 2 Rn
+ : Ax  b,A1x  b1} is the first Chvátal closure of P.

Obviously P1 ✓ P, and P1 = P if and only if P has no fractional vertices, that is
P = conv(X ).

If P1 6= conv(X ), we can iterate to obtain Chvátal closures Pk of (higher) rank k, with
k � 2.

Definition: The smallest integer k such that Pk = conv(X ) is the Chvátal rank of
conv(X ) with respect to the formulation P.

Clearly Pk = conv(X ) ⇢ . . . ⇢ P2 ⇢ P1 ⇢ P.
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3.6.3 Gomory fractional/integer cutting planes – Review

Generic ILP
min{ c tx : Ax = b, x � 0, x 2 Z

n}

where A 2 Zm⇥n, b 2 Zm⇥1 and n > m.

Assumption: rank(A)=m

Idea: At each iteration, generate C-G cuts exploiting the optimal basic feasible solution
x⇤

LP of the current LP relaxation.

B is a basis of A associated with x⇤

LP .

Ax = b, x � 0 can be expressed in canonical form as

xB = B
�1

b � B
�1

NxN with xB � 0 and xN � 0,

which emphasizes x⇤

LP = (xB , xN) = (B�1b, 0).
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If x⇤

LP = B�1b integer, x⇤

LP is also optimal for ILP.

If x⇤

LP is fractional, generate a C-G cut violated by x⇤

LP .

Let x⇤

h be a fractional basic variable and row t of the canonical form

xh +
X

j2N

atjxj = bt (= x
⇤

h ) (4)

where N corresponds to non basic variables.

Observation: Equation (4) amounts to take ut = ettB
�1 where et is the t-th

m-dimensional unit vector.

Applying CG rounding to (4):

the integer form of the Gomory cut generated from row t of LP relaxation

xh +
X

j2N

batjcxj  bbtc. (5)

Valid for X but violated by x⇤
LP

.
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Substracting (5) from (4):

the fractional form of the Gomory cut generated from row t of LP relaxation

X

j2N

(atj � batjc) xj � bt � bbtc. (6)

If {a} := a� bac � 0 denotes the fractional part of a 2 R, (6) is equivalent to

X

j2N

{atj} xj � {bt}.

Recall: {4/3} = 1/3 but {�4/3} = �4/3� (�2) = 2/3

The fractional and integer forms of a Gomory cut are equivalent.

Observation: The difference (slack) between the lhs and rhs of (5) and hence of (6) is
always integer when x is integer.

Minimal computational requirements.
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Example:
max x1 + x2
s.t. x1 + x2  5

�2x1 + x2  0
5x1 + 2x2  18
x1, x2 2 Z+

1. Graphical solution of LP relaxation:

Two optimal basic solutions: x 0 = (5/3, 10/3) and x 00 = (8/3, 7/3) of value 5.
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2. LP relaxation in standard form:

max x1 + x2
s.t. x1 + x2 + x3 = 5

�2x1 + x2 + x4 = 0
5x1 + 2x2 + x5 = 18
x1, . . . , x5 � 0

3. Canonical form w.r.t. the optimal basic solution x 00 = (8/3, 7/3, 0, 3, 0):

x1 �
2
3
x3 +

1
3
x5 =

8
3

x2 +
5
3
x3 �

1
3
x5 =

7
3

�3x3 + x4 + x5 = 3

Gomory cut derived from x1 row:

- integer form: x1 � x3  2
- fractional form: 1

3
x3 +

1
3
x5 �

2
3

Gomory cut derived from x2 row:

- integer form: x2 + x3 � x5  2
- fractional form: 2

3
x3 +

2
3
x5 �

1
3
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4. Express Gomory cut associated with x1 as a function of x1 and x2.

Substituting x3 = 5� x1 � x2 in x1 � x3  2, we obtain the cut: 2x1 + x2  7.

5. Add this Gomory cut to LP relaxation and find an optimal solution.

Adding 2x1 + x2  7 to the original formulation, we obtain an optimal solution of
new LP relaxation x⇤

LP = (2, 3) with z⇤LP5.

Since x⇤

LP is integer, it is also optimal for ILP.
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Theorem 2 (Gomory): A lexicographic cutting plane method based on Gomory
fractional/integer cuts terminates after a finite number of iterations.

Provided a careful choice of (i) the basis defining the optimal solution we intend to cut
off and (ii) the row of the tableau used to generate the cut.

In practice: Huge number of iterations and such cuts tend to become weaker after a
few iterations.

Strategy: Introduce several cuts at each iterations, e.g., all those with {bt} > ε = 0.01

Recall: Gomory fractional/integer cuts are generated via simple integer rounding.
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3.6.4 Mixed integer rounding inequalities

Consider X = {(x , y)t 2 Z⇥ R+ : x � y  b} where b 2 Q \ Z.

Illustration for b = 3/2:

Proposition 2: The mixed-integer rounding (MIR) inequality

x �
1

1� {b}
y  bbc (7)

is valid for conv(X ).

For b 2 R, {b} := b � bbc � 0 denotes the fractional part of b.
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Observation: conv({(x , y)t 2 Z⇥ R+ : x � y  b}) is defined by x � y  b, y � 0

and x � 1
1�{b}

y  bbc.
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3.6.5 Gomory mixed integer cutting planes

Generic MILP

min c t1x + c t2y

s.t. A1x + A2y = b (8)

x � 0, y � 0 (9)

x integer. (10)

(x⇤

LP , y
⇤

LP
) an optimal basic feasible solution of LP relaxation.

Denote by N1/N2 the indices in N corresponding to integer/continuous variables.

If x⇤

LP not integer ((x⇤

LP , y
⇤

LP
) not optimal), 9 an index h 2 B such that x⇤

h 62 Z.

Canonical form w.r.t. optimal basis contains a row, say t-th one:

xh +
X

j2N1

atjxj +
X

j2N2

atjyj = bt (11)

for appropriate atj and bt , with bt 62 Z.
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Notation: For any a 2 R, a+ = max{a, 0} and a� = max{�a, 0}.

Proposition 3: The Gomory mixed integer (GMI) inequality

xh +
X

j∈N1

(batjc +
({atj} � {bt})

+

1 � {bt}
)xj  bbtc +

X

j∈N2

(atj )
−

1 � {bt}
yj (12)

is valid for the feasible region (8)-(10) and is violated by (x⇤

LP , y
⇤

LP
).

Remarks: For pure ILP

i) GMI cut (12) is potentially stronger than corresponding fractional Gomory cut

(
({atj}�{bt})

+

1�{bt}
� 0 and yj = 0 8j 2 N2),

ii) coefficients are not integer anymore.

Unlike for fractional Gomory cuts in pure ILP, no finite termination guarantee for GMI
cuts but very effective in practice (see later).
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3.7 Strong valid inequalities for structured ILP problems

Studying the problem structure, we can derive strong valid inequalities yielding better
approximations of conv(X ) and tighter bounds.

For any P = {x 2 Rn
+ : Ax  b}

Definition: Given πtx  π0 and µtx  µ0 both valid for P, πtx  π0 dominates

µtx  µ0 if 9 u > 0 such that uµ  π and π0  uµ0 with (π,π0) 6= (uµ, uµ0).

Clearly {x ∈ Rn
+ : πtx ≤ π0} ⊆ {x ∈ Rn

+ : µtx ≤ µ0}.

Example: x1 + 3x2 ≤ 4 dominates 2x1 + 4x2 ≤ 9 since for (π,π0) = (1, 3, 4) and

(µ, µ0) = (2, 4, 9) we have 1
2
µ ≤ π and π0 ≤ 1

2
µ0.
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Definition: A valid πtx  π0 is redundant in the description of P if

9 k � 2 valid πix  πi
0 for P with ui > 0, 1  i  k, such that

(

kX

i=1

uiπ
i )x 

kX

i=1

uiπ
i
0 dominates π

t
x  π0.

Example:

P = {(x1, x2) ∈ R2
+ : −x1 + 2x2 ≤ 4, −x1 − 2x2 ≤ −3, −x1 + x2 ≤ 5/3, 1 ≤ x1 ≤ 3}

−x1 + x2 ≤ 5/3 redundant since dominated by −x1 + x2 ≤ 3/2 (implied by −x1 + 2x2 ≤ 4 and

−x1 ≤ −1 with u1 = u2 = 1
2
).

Observation: It can be very difficult to check redundancy. In practice, try to avoid

dominated inequalities.
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3.7.1 Faces and facets of polyhedra

Consider any P = {x 2 Rn : Ax  b}.

Definitions

x1, . . . , xk 2 Rn are affinely independent if k � 1 vectors x2 � x1, . . . , xk � x1 (or k
vectors (x1, 1), . . . , (xk , 1) in Rn+1) are linearly independent.

The dimension of P, dim(P), is equal to the maximum number of affinely
independent points of P minus 1.

P is full dimensional if dim(P) = n, i.e., no atx  b is satisfied with equality by all
points x 2 P.

Illustrations:
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Assumption: dim(P) = n

Theorem: If dim(P) = n, P admits a unique minimal description

P = {x 2 R
n : ati x  bi , i = 1, . . . ,m}

where each inequality is unique within a positive multiple.

Each inequality is necessary (deletion yields a different polyhedron).

Moreover, each valid inequality for P which is not a positive multiple of one ati x  bi is
redundant.
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1) Alternative characterization of necessary valid inequalities

Definitions

Let F = {x 2 P : πtx = π0} for any valid πtx  π0 for P. Then F is a face of P
and πtx  π0 represents or defines F .

If F is a face of P and dim(F ) = dim(P)� 1, then F is a facet of P.

Illustrations:

Consequences: The faces of a polyhedron are polyhedra, a polyhedron has a finite
number of faces.

Theorem: If P is full dimensional, a valid inequality is necessary to describe P if and
only if it defines a facet of P, i.e., if 9 n affinely independent points of P satisfying it at
equality.
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Example:

Consider P ⊂ R2 described by:

x1 + 2x2 ≤ 4 (1)

−x1 − 2x2 ≤ −3 (2)

−x1 + x2 ≤
3

2
(3)

x1 ≤ 3 (4)

x1 ≥ 1 (5)

Verify that P is full dimensional (dim(P)=2).

Which inequalities define facets of P or are redundant? All but (3) define facets.
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2) Showing that a valid inequality is facet defining

Consider X ⇢ Zn
+ and a valid inequality πtx  π0 for X .

Assumption: conv(X ) is bounded and dim(conv(X )) = n.

Simple approaches to show that πtx  π0 defines a facet of conv(X ):

1) Apply the definition: Find n points x1, . . . , xn 2 X satisfying πtx = π0

and prove that they are affinely independent.

2) Indirect approach:

(i) Select t points x1, . . . , x t 2 X , with t � n, satisfying πt x = π0.

Suppose that they all belong to a generic hyperplane µtx = µ0.

(ii) Solve linear system
nX

j=1

µjx
k
j = µ0 for k = 1, . . . , t

in n + 1 unknowns µ0, µ1, . . . , µn.

(iii) If the only solution is (µ, µ0) = λ(π,π0) with λ 6= 0, then πt x  π0 defines a facet
of conv(X ).
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Example:

Consider X = {(x , y) 2 Rm ⇥ {0, 1} :
Pm

i=1 xi  my , 0  xi  1 8i}

i) Verify that dim(conv(X )) = m + 1.

(0, 0), (0, 1) and (e i , 1), with 1 ≤ i ≤ m, are m + 2 affinely independent points of conv(X ).

ii) Show (approach 2) that, for each i , valid xi  y defines a facet of conv(X ).
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3.7.2 Cover inequalities for binary knapsack problem

Consider X = {x 2 {0, 1}n :
Pn

j=1 ajxj  b} with b > 0 and N = {1, . . . , n}.

Assumptions: For each j , aj  b and aj > 0.

Definition: A subset C ✓ N is a cover for X if
P

j2C aj > b.

A cover is minimal if, for each j 2 C , C \ {j} is not a cover.

Example: For X = {x ∈ {0, 1}7 : 11x1 + 6x2 + 6x3 + 5x4 + 5x5 + 4x6 + x7 ≤ 19}

{1, 2, 3} is a minimal cover and {3, 4, 5, 6, 7} is a non-minimal cover.

Proposition: If C ✓ N is a cover for X , the cover inequality
X

j2C

xj  |C |� 1

is valid for X .

Example cont.: For above covers x1 + x2 + x3 ≤ 2 and x3 + x4 + x5 + x6 + x7 ≤ 4.
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Proposition: If C ✓ N is a cover for X , the cover inequality

X

j2C

xj  |C |� 1

defines a facet of PC := conv(X ) \ {x 2 Rn : xj = 0, j 2 N \ C} if and only if C is a
minimal cover.
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1) Separation of cover inequalities

Separation problem: Given a fractional x with 0  x j  1, 1  j  n, find a cover
inequality violated by x or establish that none exists.

Since
P

j2C xj  |C |� 1 can be written as
P

j2C (1� xj) � 1, it amounts to question:

9 C ✓ N such that
P

j2C aj > b and
P

j2C (1� x j) < 1?

If z 2 {0, 1}n incidence vector of C ✓ N, it is equivalent to:

ζ = min{
P

j2N(1� x j)zj :
P

j2N ajzj > b, z 2 {0, 1}n} < 1?

Proposition:

(i) If ζ � 1, x satisfies all cover inequalities.

(ii) If ζ < 1 with optimal solution z⇤, then
P

j2C xj  |C |� 1 with

C = {j : z⇤j = 1, 1  j  n} is violated by x by a quantity 1� ζ.
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Example:

max 5x1 + 2x2 + x3 + 8x4
s.t. 4x1 + 2x2 + 2x3 + 3x4 ≤ 4

xj ∈ {0, 1} ∀j ∈ {1, . . . , 4}

Optimal solution of LP relaxation x⇤
LP

= (1/4, 0, 0, 1)t of value 9.25.

Separation problem is NP-hard, in practice fast heuristics.
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2) Strengthening cover inequalities

Proposition: If C ✓ N is a cover for X , the extended cover inequality

X

j2E(C)

xj  |C |� 1

is valid for X , where E(C) = C [ {j 2 N : aj � ai for all i 2 C}.

Example cont.: X = {x ∈ {0, 1}7 : 11x1 + 6x2 + 6x3 + 5x4 + 5x5 + 4x6 + x7 ≤ 19}

extended cover inequality for C = {3, 4, 5, 6} is

x1 + x2 + x3 + x4 + x5 + x6 ≤ 3

which clearly dominates

x3 + x4 + x5 + x6 ≤ 3.
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Systematic way to strengthen a cover inequality to obtain a facet defining one.

Example of lifting procedure:

X = {x ∈ {0, 1}7 : 11x1 + 6x2 + 6x3 + 5x4 + 5x5 + 4x6 + x7 ≤ 19}

Minimal cover C = {3, 4, 5, 6} with x3 + x4 + x5 + x6 ≤ 3.

Consider xj with j ∈ N \ C in the order x1, x2 and x7.

The largest α1 such that α1x1 + x3 + x4 + x5 + x6 ≤ 3 is valid for X is
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Lifting procedure for cover inequalities

Let j1, . . . , jr be an ordering of N \ C and set t = 1.

Pt�1
i=1 αji xji +

P
j2C xj  |C |� 1 valid inequality obtained at iteration t � 1.

Iteration t: Determine the maximum αjt such that

αjt xjt +

t�1X

i=1

αji xji +
X

j2C

xj  |C |� 1

is valid for X by solving (binary knapsack) problem

σt = max
Pt�1

i=1 αji xji +
P

j2C xj

s.t.
Pt�1

i=1 aji xji +
P

j2C ajxj  b � ajt
x 2 {0, 1}|C |+t�1

and setting αt = |C |� 1� σt .

Terminate when t = r .

Note: σt = maximum amount of ”space” used up by the variables of indices in C ∪ {j1, . . . , jt�1}

when xjt = 1.

Edoardo Amaldi (PoliMI) Optimization Academic year 2023-24 15 / 23



Proposition: If C ✓ N is a minimal cover and aj  b for all j 2 N, the lifting procedure
is guaranteed to yield a facet defining inequality of conv(X ).

Example cont.:

X = {x ∈ {0, 1}7 : 11x1 + 6x2 + 6x3 + 5x4 + 5x5 + 4x6 + x7 ≤ 19}

the valid inequality
2x1 + x2 + x3 + x4 + x5 + x6 ≤ 3

defines a facet of conv(X ).

The resulting facet defining inequality depends on the order of variables N \ C , that is,
on the lifting sequence.
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3.7.3 Strong valid inequalities for TSP

STSP: Given undirected G = (V ,E) with n = |V | nodes and a cost ce for every
e = {i , j} 2 E , determine a Hamiltonian cycle of minimal total cost.

min
P

e2E cexe
s.t.

P
e2δ(i) xe = 2 i 2 VP

e2E(S) xe  |S |� 1 S ⇢ V , S 6= ;

xe 2 {0, 1} e 2 E .

conv(X ) with X = {x 2 {0, 1}|E | of Hamiltonian cycles } is the STSP polytope

Proposition: For every S ✓ V with 2  |S |  n/2 and n � 4,
X

e2E(S)

xe  |S |� 1

defines a facet of conv(X).

STSP polytope has a very complicated structure. Many classes of facet defining inequalities are

known but its complete description is unknown.
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Separation of cut-set inequalities for the ATSP

ILP formulation:

min
P

(i,j)2A cijxij (6)

s.t.
P

(i,j)2δ−(j) xij = 1 8j (7)
P

(i,j)2δ+(i) xij = 1 8i (8)
P

(i,j)2δ+(S) xij � 1 8S ⇢ V : 1 2 S (9)

xij 2 {0, 1} 8(i , j) 2 A (10)

Cutting plane approach:

Start solving LP relaxation of (6)-(10) without (9), namely

min
P

(i,j)2A cijxij (11)

s.t.
P

(i,j)2δ−(j) xij = 1 8j (12)
P

(i,j)2δ+(i) xij = 1 8i (13)

xij� 0 8(i , j) 2 A, (14)

and iteratively add some which substantially violate the current x⇤

LP .
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Proposition:

Given x⇤

LP of the current LP relaxation ((11)-(14) with (9) generated so far), a cut-set
inequality (9) violated by x⇤

LP can be obtained (if 9) by solving a sequence of instances of
the minimum cut problem.

Separation algorithm:

Given x⇤
LP

, look for S⇤ ⊆ V with 1 ∈ S⇤ such that
P

(i,j)2δ+(S∗) x
⇤

ij < 1.
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Illustration:

Observations:

The separation problem can be solved in polynomial time.

The procedure may yield a number of violated cut-set inequalities (one for each t).
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3.7.4 Equivalence between separation and optimization

A family of LPs min{ c tx : x 2 Po} with o 2 O, where Po = { x 2 Rno : Aox � bo }
polytope with rational (integer) coefficients and a very large number of constraints.

Examples:

1) LP relaxation of ATSP with cut-set inequalities (O set of all graphs)

2) Maximum Matching problem: For each G = (V ,E), the matching polytope

conv({x ∈ {0, 1}|E | :
X

e2δ(i)

xe ≤ 1, ∀i ∈ V })

coincides (Edmonds) with

{x ∈ R
|E |
+ :

X

e2δ(i)

xe ≤ 1, ∀i ∈ V ,
X

e2E(S)

xe ≤
|S |− 1

2
, ∀S ⊆ V with |S | ≥ 3 odd}.

Consider a cutting plane approach.

Assumption: The number of constraints mo of Po is exponential in no but Ao and bo are
specified in a concise way (as function of a polynomial number of parameters w.r.t. no).
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Optimization problem: Given rational polytope P ✓ Rn and c 2 Qn, find x⇤ 2 P

minimizing c tx over x 2 P or establish that P is empty.

N.B.: P assumed to be bounded just to avoid unbounded problems.

Separation problem: Given rational polytope P ✓ Rn and x 0 2 Qn, establish

that x 0 2 P or determine a cut that separates x 0 from P.

Theorem: (consequence of Grötschel, Lovász, Schriver 1988 theorem)

The separation problem (for a family of polyhedra) can be solved in polynomial time in n

and logU if and only if the optimization problem (for that family) can be solved in
polynomial time in n and logU, where U is an upper bound on all aij and bi .

Proof based on Ellipsoid method, first polynomial algorithm for LP.

Corollary: The LP relaxation of ILP formulation with cut-set inequalities for ATSP
can be solved in polynomial time in spite of its exponential size.
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3.7.5 Remarks on cutting plane methods

Generic Discrete Optimization problem

min{ c tx : x 2 X ✓ R
n
+}

When designing a cutting plane method

Describing families of strong (possibly facet defining) valid inequalities for conv(X )
can be difficult.

The separation problem for a given family F may be computationally challenging (if
NP-hard devise heuristics).

Even when finite convergence is guaranteed (e.g., Gomory cuts), pure cutting plane
methods tend to be very slow.

Polyhedral Combinatorics is the subfield studying the polyhedral structure of ideal
formulations.
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3.8 Branch and Cut

Idea: Embed strong valid inequalities into a Branch-and-Bound framework to be able to
solve hard/large problems to optimality.

→ Branch-and-Cut method

(Strong) valid inequalities are generated throughout the branching tree.

Advantages:

stronger LP relaxations of subproblems yield tighter dual bounds which improve
Branch and Bound efficiency,

slow convergence of pure cutting plane method is contrasted by branching steps.

Trade-off between computational load of reoptimization and quality of the formulations
(bounds).
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Main components of Branch and Cut (min problem)

Preprocessing

Delete redundant constraints, strengthen the constraint coefficients and r.h.s. terms, fix
variables (whenever possible).

Primal heuristics

Tighter upper bounds lead to a more efficient implicit enumeration.

Cutting planes pool

Violated valid inequalities and facets are added by solving corresponding separation
problems exactly or heuristically. Many of them are simultaneously added at each node.

Branching strategy

Choice of the fractional branching variable based on one/mix of criteria (with largest
cost coefficient, ”most promising” one based on estimate,...).

Postprocessing

When x∗

LP of value zLP is not integer, primal heuristic yields a feasible xheur such that
zLP ≤ z∗ ≤ zheur (xheur often derived by ”smart” rounding).
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For flow chart of Branch and Cut, see L. Wolsey, Integer Programming, p. 158.
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For an example of application to the generalized assignment problem

min z =
P

i∈I

P
j∈J

cijxij

s.t.
P

j∈J
xij = 1 ∀i ∈ I

P
i∈I

wijxij ≤ bj ∀j ∈ J

xij ∈ {0, 1} ∀i ∈ I , ∀j ∈ J,

see computer lab 2 and L. Wolsey, Integer Programming, p. 157-160.

Computer lab 2: separate cover inequalities and evaluate the impact of adding them
at the root node of the branching tree (Cut and Branch).

Branch and Cut methods solve to optimality a wide range of discrete optimization
problems.

Example: Concorde algorithm for TSP (see http://www.math.uwaterloo.ca/tsp/)
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Impact of different features in a MILP solver

From R. Bixby, M. Fenelon, Z. Gu, E. Rothberg and R. Wunderling, Mixed integer programming:

A progress report, M. Grötschel ed., The sharpest cut, MPS/SIAM Series in Optimization (2004)

309-326.

2002 ”new generation” Cplex solver for MILPs

Computational experiments on set of 106 benchmark instances

Different features

Feature Speedup factor

Cuts 54

Preprocessing 11

Variable fixing 3
Heuristics 1.5

Average speedup for each feature (enabling that feature versus disabling it, while keeping all

others active).
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Different types of cutting planes

Cut type Speedup factor

GMI 2.5

MIR 1.8

Knapsack cover 1.4
Flow cover 1.2
Implied bounds 1.2
Path 1.04
Clique 1.02
GUB cover 1.02

MIR cuts: heuristic aggregation of constraints with mixed integer rounding.

GMI and MIR cuts implementations account for finite precision (avoid invalid cuts or
cuts that could slow down LP solution).
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3.9 Column generation method

Many relevant decision-making problems can be formulated as ILP problems with a very
large (exponential) number of variables.

Examples: cutting stock, crew scheduling, vehicle routing, combinatorial auctions,

multicommodity flows,...

General idea:

enumerate all partially feasible solutions and represent any additional constraints in
a set covering/packing/partitionning type of formulation.

do not consider all variables explicitly, new variables are generated when needed.
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Example: 1-D cutting stock problem

A paper company produces large rolls of width W .

Demand: bi small rolls of width wi (wi ≤ W ), i ∈ I = {1, . . . ,m}.

Small rolls obtained by cutting large rolls according to certain patterns.

E.g. W = 15, w1 = 6, w2 = 2, patterns

✓

2
1

◆

and

✓

1
4

◆

feasible with waste of 1.

Given

large rolls of width W ,

demands for bi small rolls of width wi , with i ∈ I

decide how to cut large rolls into small ones so as to minimize the number of large rolls
used, while satisfying demand.

Illustration:

NP-hard problem
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Classical ILP formulation (Kantorovich)

K : index set of the large rolls

xk
i = number of times i-th small roll is cut in k-th large roll, i ∈ I , k ∈ K

yk = 1 if k-th large roll is cut, with k ∈ K

zK−ILP = min
P

k∈K yk

s.t.
P

k∈K xk
i ≥ bi ∀i ∈ I = {1, . . . ,m}

P
i∈I wix

k
i ≤ Wyk ∀k ∈ K

xk
i ∈ Z+, yk ∈ {0, 1} ∀i ∈ I , k ∈ K

Very weak formulation

Trivial LP relaxation bound:

zK−LP =
X

k∈K

yk =
X

k∈K

X

i∈I

wix
k
i

W
=

X

i∈I

wi

W

X

k∈K

xki =

Pm
i=1 wibi

W
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Set covering ILP formulation (Gilmore and Gomory)

Let J = {1, . . . , n} denote index set of the patterns,

aij the number of small rolls of width wi in j-th cutting pattern.

xj = number of large rolls cut according to j-th pattern, 1 ≤ j ≤ n

zILP = min
Pn

j=1 xj

s.t.
Pn

j=1 aijxj ≥ bi ∀i ∈ I = {1, . . . ,m}

xj ∈ Z+ ∀j ∈ J = {1, . . . , n}

Number n of variables (patterns) grows exponentially with number m of rows (types of small

rolls).

Observations:

at LP optimality at most m of the n variables have nonzero value; since m ⌧ n only a very
small subset of them (columns) is needed.

for large integer bi s, rounding optimal solutions of LP relaxation leads to satisfactory
integer solutions,
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Column generation scheme

Idea: no need to include all variables a priori, new variables are generated when needed.

Main steps:

1) consider LP relaxation of ILP, choose initial subset of variables J0 ⊆ J, and set
k = 0,

2) solve LP Restricted Master problem (LPRM) with subset Jk ,

3) solve pricing subproblem for LPRM with Jk to search for an improving non basic
variable xl (with negative reduced cost if min problem) and the associated column,

4) if ∃ such xl , update Jk+1 := Jk ∪ {l}, set k := k + 1 and goto (2);

otherwise LPRM optimal solution is also optimal for LP relaxation of original ILP.

Observation: Column generation (CG) yields an optimal solution of LP relaxation and
hence a bound on optimal ILP solution value.
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Example cont.: 1-D cutting stock problem

LP relaxation of Master problem (LPM):

zLPM = min
Pn

j=1 xj

s.t.
Pn

j=1 aijxj ≥ bi ∀i ∈ I = {1, . . . ,m}

xj ≥ 0 ∀j ∈ J = {1, . . . , n}.

and its dual:

max
Pm

i=1 biyi

s.t.
Pm

i=1 aijyi ≤ 1 ∀j ∈ J = {1, . . . , n}

yi ≥ 0 ∀i ∈ I = {1, . . . ,m}.

When solving LPM with Simplex method:

Since c tN = cN − c tB
tB−1N, the reduced cost of non basic variable xj is

c j = 1−
Pm

i=1 aijyi , where y t = c tB−1 is (complementary) dual solution.

If c j ≥ 0 for all non basic variables, the current basic feasible solution is optimal.
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Start with LP Restricted Master problem (LPRM) with J0 ⊂ J = {1, . . . , n},
guaranteeing a feasible solution.

LPRM with J0:

zLPRM = min
Pn

j=1 xj

s.t.
P

j∈J0
aijxj ≥ bi ∀i ∈ I = {1, . . . ,m}

xj ≥ 0 ∀j ∈ J0.

Reduced cost of non basic variable xj is still c j = 1−
Pm

i=1 aijyi .

Dual of LPRM with J0:

max
Pm

i=1 biyi

s.t.
Pm

i=1 aijyi ≤ 1 ∀j ∈ J0

yi ≥ 0 ∀i ∈ I = {1, . . . ,m}.

Let x∗ and y∗ be optimal solutions of LPRM and its dual, respectively.
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Search for new improving non basic variables (columns/patterns)

Look for a non basic variable with smallest reduced cost and corresponding pattern
α ∈ Z

m
+ by solving the pricing subproblem:

min c = 1−
Pm

i=1 y
∗

i αi

s.t.
Pm

i=1 wiαi ≤ W (1)

αi ∈ Z+ ∀i ∈ I = {1, . . . ,m}

Integer Knapsack problem that can be solved in O(mW ) using Dynamic Programming.

Two cases:

if c∗ ≥ 0, the optimal solution of current LPRM is also optimal for LP relaxation,

adding to current LPRM any non basic variable associated to a cutting pattern
α ∈ Z

m
+ with c < 0, improves (decreases) the objective function value.
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Example cont.: 1-D cutting stock problem

W = 3.9 m, w =

0

@

1.25
1
0.8

1

A and b =

0

@

35
171
133

1

A.

Initial patterns: A1 =





1
1
2



 waste of 0.05, A2 =





0
1
3



 waste of 0.5,

A3 =





2
0
1



 waste of 0.6, A4 =





0
3
0



 waste of 0.9

From J. Lundgren, M. Rönnqvist, P. Värbrand, Optimization, Studentlitteratur AB, Lund, Sweden, 2010.

LP Restriced Master problem:

min z =
P4

j=1 xj

s.t.

0

@

1
1
2

1

A x1 +

0

@

0
1
3

1

A x2 +

0

@

2
0
1

1

A x3 +

0

@

0
3
0

1

A x4 �

0

@

35
171
133

1

A

xj � 0 8j 2 J0 = {1, 2, 3, 4}
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Optimal solution of LPRM: x∗ = (35, 21, 0, 38.33)t with value z∗ = 94.33

Optimal dual solution: y∗ = ( 2
9
,
1
3
,
2
9
)t

Pricing subproblem:

min c = 1� ( 2
9
α1 +

1
3
α2 +

2
9
α3)

s.t. 1.25α1 + 1α2 + 0.8α3  3.9

α1,α2,α3 � 0 integer

Optimal solution (integer knapsack): α
∗ = (0, 3, 1)t with value c = � 2

9
.

Since c < 0, adding new pattern A5 = (0, 3, 1)t will improve (decrease) the objective function
value.

Optimal solution of LPRM with J1 = {1, 2, 3, 4, 5}: x∗ = (35, 6.625, 0, 0, 43.125)t with

value z∗ = 84.75.

Optimal dual solution: y∗ = ( 1
4
,
1
4
,
1
4
)t
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Pricing subproblem:

min c = 1� ( 1
4
α1 +

1
4
α2 +

1
4
α3)

s.t. 1.25α1 + 1α2 + 0.8α3  3.9

α1,α2,α3 � 0 integer

with optimal solution α
∗ = (0, 3, 1)t (as before!) and c = 0.

Thus x∗ = (35, 6.625, 0, 0, 43.125)t is an optimal sol. of LP relaxation of original ILP.

N.B.: in general many iterations!

Rounding up: x = (35, 7, 0, 0, 44)t with z = 86.

Since zLPM = 84.75, lower bound is 85.

Optimal ILP solution: x ILP = (36, 6, 0, 0, 43)t with zILP = 85.
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General remarks

Initial set of columns (J0) has a strong impact: rich enough to guarantee initial
feasible solution but not too large to reduce computational load.

Heuristics for pricing subproblem as long as an improving variable (column) is
found. Exact method only to certify that LPRM solution is also optimal for LPM.

CG methods can be viewed as cutting plane methods to solve the dual of LPM.

Strong practical impact of CG due to great flexibility to model complicated
restrictions.

To find an optimal solution of original ILP, CG can be embedded in a

Branch-and-Bound framework ⇒ Branch-and-Price method.

Computer Lab 3: apply Column Generation to the airline crew pairing problem.
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3.10 Lagrangian duality and relaxation

Generic ILP
min {c tx : Ax ≥ b, Dx ≥ d , x ∈ Z

n}

with integer coefficients.

Suppose Dx ≥ d are ”complicating” constraints.

Idea: Delete Dx ≥ d and, for each one of them, add to objective function a term

with a multiplier ui , which penalizes its violation.

For min problems, ≤ 0 for all feasible solutions of original problem.

More general setting:
min {c tx : Dx ≥ d , x ∈ X ⊆ R

n} (1)
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Definition: Given
z
∗ = min {c tx : Dx ≥ d , x ∈ X ⊆ R

n} (2)

For each multipliers vector u ≥ 0, Lagrangian subproblem is

w(u) = min {c tx + u
t(d − Dx) : x ∈ X} (3)

where

L(x , u) = c
t
x + u

t(d − Dx) Lagrangian function of primal (2),

w(u) = min {L(x , u) : x ∈ X} dual function.

Proposition: For any u ≥ 0, the Lagrangian subproblem (3) is a relaxation of (2).

Proof: Clearly {x ∈ X : Dx ≥ d} ⊆ X . For every u ≥ 0 and x feasible for (2), we have

w(u) ≤ ctx . Indeed w(u) ≤ ctx + ut(d − Dx) ≤ ctx since ut(d − Dx) ≤ 0 for all

x feasible for (2).

Corollary: If z∗ = min {c tx : Dx ≥ d , x ∈ X} is finite, then w(u) ≤ z
∗

∀u ≥ 0.
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To determine tightest lower bound

Definition: Lagrangian dual of primal problem (2) is

w
∗ = max

u≥0
w(u) (4)

Note: Relaxing linear constraints, L(., u) is linear. Subproblem (3) must be ”sufficiently easy”.

For LPs Lagrangian dual coincides with LP dual.

Corollary: (Weak Duality)

For every pair of feasible solutions x ∈ {x ∈ X : Dx ≥ d} of primal (2) and u ≥ 0 of
Lagrangian dual (4), we have

w(u) ≤ c
t
x .
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Consequences:

i) If x̃ feasible for primal (2), ũ feasible for Lagrangian dual (4) and c
t
x̃ = w(ũ),

then x̃ and ũ optimal for respectively (2) and (4).

ii) In particular w∗ = maxu≥0 w(u) ≤ z
∗ = min {c tx : Dx ≥ d , x ∈ X}.

If one problem is unbounded, the other one is infeasible.

Recall: For any primal-dual pair of bounded LPs, we have strong duality (w∗ = z∗).

Observation: In discrete optimization we can have a duality gap, i.e., w∗
< z

∗.

ILP with equality constraints:

Lagrangian dual is
max
u∈Rm

w(u)
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Example: Uncapacitated Facility Location (UFL)

Variant with profits pij , fixed costs fj for opening the depots in the candidate sites, and total
profit to be maximized.

MILP formulation:

z∗ = max
P

i∈M

P

j∈N pijxij −
P

j∈N fjyj

s.t.
P

j∈N xij = 1 ∀i ∈ M (5)

xij ≤ yj ∀i ∈ M, j ∈ N

yj ∈ {0, 1} ∀j ∈ N

0 ≤ xij ≤ 1 ∀i ∈ M, j ∈ N

Relaxing constraints (5), Lagrangian subproblem:

w(u) = max
P

i∈M

P

j∈N(pij − ui )xij −
P

j∈N fjyj +
P

i∈M ui

s.t. xij ≤ yj ∀i ∈ M, j ∈ N (6)

yj ∈ {0, 1} ∀j ∈ N (7)

0 ≤ xij ≤ 1 ∀i ∈ M, j ∈ N (8)

which decomposes into |N| independent subproblems, one for each candidate site j .
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Indeed w(u) =
P

j∈N wj (u) +
P

i∈M ui where

wj (u) = max
P

i∈M(pij − ui )xij − fjyj (9)

s.t. xij ≤ yj ∀i ∈ M

yj ∈ {0, 1}

0 ≤ xij ≤ 1 ∀i ∈ M

For each j ∈ N, the subproblem (9) can be solved by inspection:

If yj = 0, then xij = 0 for each i and objective function value is 0.

If yj = 1, set xij = 1 for all i such that pij − ui > 0, with objective function value of

X

i∈M

max{pij − ui , 0}− fj .

Thus wj (u) = max{0,
P

i∈M max{pij − ui , 0}− fj}.

See Chapter 10 of L. Wolsey, Integer Programming, p. 169-170
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Properties of Lagrangian subproblem and dual function

Proposition: If u ≥ 0 and

i) x(u) is an optimal solution of Lagrangian subproblem (3)

ii) Dx(u) ≥ d

iii) (Dx(u))i = di for each ui > 0 (complementary slackness conditions),

then x(u) is also optimal for primal (2).

Proof:

Due to (i) and respectively (iii), we have w∗ ≥ w(u) = ctx(u) + ut(d − Dx(u)) = ctx(u).

According to (ii), x(u) is a feasible solution of primal (2) and hence ctx(u) ≥ z∗.

Thus w∗ ≥ ctx(u) ≥ z∗ and, since w∗ ≤ z∗, x(u) is an optimal solution of primal (2).

Proposition: Dual function w(u) is concave.

Illustration:
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3.10.1 Strength and choice of the Lagrangian dual

Characterization in terms of an LP.

Theorem: Generic ILP

min {c tx : Ax ≥ b, Dx ≥ d , x ∈ Z
n}

with integer coefficients.

Let w(u) = min {c tx + u
t(d − Dx) : Ax ≥ b, x ∈ Z

n},

w
∗ = maxu≥0 w(u) and X = {x ∈ Z

n : Ax ≥ b},

then
w

∗ = min {c tx : Dx ≥ d , x ∈ conv(X )}.

”Convexification” of X .

Corollary 1: Since conv(X ) ⊆ {x ∈ R
n : Ax ≥ b},

zLP = min {c tx : Ax ≥ b,Dx ≥ d , x ∈ R
n} ≤ w

∗
≤ z

∗.

We may have zLP < w∗ < z∗.
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Illustration: D. Bertsimas, R. Weismantel, Optimization over integers, Dynamic Ideas, 2005

min 3x1 − x2

s.t. x1 − x2 ≥ −1 (10)

−x1 + 2x2 ≤ 5 (11)

3x1 + 2x2 ≥ 3 (12)

6x1 + x2 ≤ 15 (13)

x1, x2 ≥ 0 integer

x ILP = (1, 2)t with zILP = 1 and xLP = (1/5, 6/5)t with zLP = −3/5.

- Dualize (10): For every u ≥ 0, w(u) = min(x1,x2)∈X 3x1 − x2 + u(−1− x1 + x2)

where X is the set of all integer solutions of (11)-(13).

- Find optimal solution u∗ of Lagrangian dual: w∗ = maxu≥0 w(u) and optimal solution
xD = x(u∗).

Represent conv(X ) ∩ {(x1, x2) ∈ R
2 : x1 − x2 ≥ −1} (in grey).

Obtain xD = (1/3, 4/3) with w∗ = −1/3.

Thus zLP = −3/5 < w∗ = −1/3 < zILP = 1
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Drawing w(u) we can verify that u∗ = 5/3 with w∗ = −1/3.
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Illustration w(u):
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In some cases Lagrangian relaxation is as weak as LP relaxation.

Corollary 2: If X = {x 2 Z
n : Ax � b} and conv(X ) = {x 2 R

n : Ax � b}, then

w⇤ = max
u�0

w(u) = zLP = min {c tx : Ax � b,Dx � d , x 2 R
n}.

Example: Binary knapsack problem

max z =
Pn

j=1 pjxj

s.t.
Pn

j=1 ajxj ≤ b

xj ∈ {0, 1} ∀j

and its LP relaxation

zLP−KP = max
x∈[0,1]n

{
n

X

j=1

pjxj :
n

X

j=1

ajxj ≤ b}.

X = {x ∈ {0, 1}n} and conv(X ) = {x ∈ [0, 1]n}, and 0 ≤ xj ≤ 1 are already contained

in LP relaxation.

Corollary 2 implies: w∗ = zLP−KP .
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Choice of the Lagrangian dual

Which constraints to relax to get tighter bounds?

Choice criteria:

i) strength of the bound w⇤ obtained by solving Lagrangian dual,

ii) difficulty of solving Lagrangian subproblems

w(u) = min {c tx + ut(d � Dx) : x 2 X ✓ R
n},

iii) difficulty of solving Lagrangian dual: w⇤ = maxu�0 w(u).

For (i) we have the LP characterization,

(ii) depends on the specific problem,

(iii) depends, among others, on the number of dual variables.

Look for a reasonable trade-off.

See exercise 5.3 on the generalized assignment problem.
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3.10.2 Solution of the Lagrangian duals

Generalization of the gradient method for C1 functions to convex piecewise C1

ones (not everywhere differentiable).

Definition: Let C ✓ R
n and f : C ! R be convex.

• γ 2 R
n is a subgradient of f at x 2 C if

f (x) � f (x) + γt(x � x) 8x 2 C

• the subdifferential, denoted by ∂f (x), is the set of all subgradients of f at x .

Example: For f (x) = |x |, γ = 1 if x > 0, γ = −1 if x < 0, and ∂f (x) = [−1, 1] if x = 0

Properties:

A convex f : C ! R has at least one subgradient at each interior point x of C .

x⇤ is a global minimum of f if and only if 0 2 ∂f (x⇤).
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Subgradient method

Given minx2Rn f (x) with f (x) convex.

Start from an abitrary x0.

At k-th iteration: consider γ
k
2 ∂f (xk) and set

xk+1 := xk � αk γk

with αk > 0

Observation: No 1-D search (optimization) because for nondifferentiable functions a

subgradient γ ∈ ∂f (x) is not necessarily a descent direction!
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Example: min−1≤x1,x2≤1 f (x1, x2) with f (x1, x2) = max{−x1, x1 + x2, x1 − 2x2}

Level curves in black, points of nondifferentiability (t, 0), (−t, 2t) and (−t,−t) for t ≥ 0, global
minimum x∗ = (0, 0).

At xk = (1, 0)t consider γ
k
= (1, 1) ∈ ∂f (xk ), f (x) increases along

{x ∈ R
2 : x = xk − αkγk

,αk ≥ 0} but if αk is sufficiently small then xk+1 = xk − αkγk
is

closer to x∗.

From Chapter 8, Bazaraa et al., Nonlinear Programming, Wiley, 2006, p. 436-437
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Theorem:

If f is convex, limkxk!1 f (x) = +1, limk!1 αk = 0 and
P1

k=0 αk = 1, the
subgradient method terminates after a finite number of iterations with an optimal
solution x⇤ or infinite sequence {xk} admits a subsequence converging to x⇤.

Stepsize:

In practice {αk} as above (e.g., αk = 1/k) are too slow.

An option: αk = α0ρ
k for a given ρ < 1. A more popular one (min problems):

αk = εk
f (xk)� f̂

kγ
k
k2

,

where 0 < εk < 2 and f̂ is either the optimal value f (x⇤) or an estimate.

Stopping criterion: prescribed maximum number of iterations
(even if 0 2 ∂f (xk) it may non be considered at xk).

Need to store the best solution xk found.

Simple extension for bounds (projections).
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Subgradient method for Lagrangian dual

max
u�0

w(u)

where w(u) = min {c tx + ut(d � Dx) : x 2 X ✓ R
n} is concave and piecewise

linear.

Simple characterization of the subgradients of w(u):

Proposition:

Consider ũ � 0 and X (ũ) = {x 2 X : w(ũ) = c tx + ũt(d � Dx)} set of optimal
solutions of Lagrangian subproblem (3). Then

For each x(ũ) 2 X (ũ), the vector (d � Dx(ũ)) 2 ∂w(ũ).

Each subgradient of w(u) at ũ can be expressed as a convex combination of
subgradients (d � Dx(ũ)) with x(ũ) 2 X (ũ).
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Procedure:

1) Select initial u0 and set k := 0.

2) Solve Lagrangian subproblem

w(uk) = min {c tx + utk(d � Dx) : x 2 X}.

If x(uk) optimal solution found, (d � Dx(uk)) is a subgradient of w(u) at
uk .

3) Update Lagrange multipliers:

uk+1 = max{0, uk + αk (d � Dx(uk))}

with, for instance, αk = εk
ŵ�w(uk )

kd�Dx(uk )k
2 , where ŵ is an estimate of optimal

value w⇤.

4) Set k := k + 1
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3.10.3 Lagrangian relaxation for the STSP (Held & Karp)

Symmetric TSP: Given undirected G = (V ,E ) with cost ce 2 Z
+ for each e 2 E ,

determine a Hamiltonian cycle of minimum total cost.

min
P

e2E cexe

s.t.
P

e2δ(i) xe = 2 8i 2 V (14)
P

e2E(S) xe  |S |� 1 8S ✓ V , 2  |S |  n � 1 (15)

xe 2 {0, 1} 8e 2 E

where E(S) = {{i , j} ∈ E : i ∈ S , j ∈ S}

Observations:

i) Due to (14), half of the (15) are redundant:
P

e∈E(S) xe ≤ |S |− 1 if and only if
P

e∈E(S) xe ≤ |S |− 1, where S = V \ S .

Thus all (15) with 1 ∈ S can be deleted.

ii) Summing over all (14) and dividing by 2, we obtain
P

e∈E xe = n that can be added.
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Recall: a Hamiltonian cycle is a 1-tree (i.e., a spanning tree on nodes {2, . . . , n} plus two edges

incident to node 1) in which all nodes have exactly two incident edges.

SinceP
e2E cexe +

P
i2V ui (2�

P
e2δ(i) xe) =

P
e={i,j}2E (ce � ui � uj)xe + 2

P
i2V ui ,

relaxing the degree constraints (14) for all nodes except node 1,

Lagrangian subproblem:

w(u) = min
P

e2E (ce � ui � uj)xe + 2
P

i2V ui

s.t.
P

e2δ(1) xe = 2
P

e2E(S) xe  |S |� 1 8S ✓ V , 2  |S |  n � 1, 1 62 S
P

e2E xe = n

xe 2 {0, 1} 8e 2 E

where u1 = 0 and E (S) = {{i , j} 2 E : i 2 S , j 2 S}.

Note: Set of feasible solutions ≡ set of all 1-trees.

Lagrangian dual: maxu2R|V | : u1=0 w(u)
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Example from L. Wolsey, Integer Programming, p. 175-177

Undirected G = (V ,E) with 5 nodes and cost matrix:













− 30 26 50 40
− − 24 40 50
− − − 24 26
− − − − 30
− − − − −













Dual function:

w(uk ) = min

8

<

:

X

e={i,j}∈E

(ce − uki − ukj )x
k
e + 2

X

i∈V

uki : xk incidence vector of a 1-tree

9

=

;

Notation: ckij = ce − uki − ukj for e = {i , j} ∈ E

Subgradient γk with γk
i = (2−

P

e∈δ(i) x
k
e ), where xk = x(uk ) is an optimal solution of

Lagrangian subproblem at k-th iteration.

Since
P

e∈δ(1) xe = 2 is not relaxed, γk
1 = 0 for all k.

Starting from u01 = 0 we then have uk1 = 0 for all k ≥ 1.
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Feasible solution of cost 148 found with primal heuristic:

x12 = x23 = x34 = x45 = x51 = 1 and xij = 0 for all other {i , j} ∈ E

Solution of Lagrangian dual starting from u0 = 0 with ε = 1:

Solving Lagrangian subproblem with costs:

C
0

= C =













− 30 26 50 40
− − 24 40 50
− − − 24 26
− − − − 30
− − − − −













(c0e = ce for each e ∈ E since u0 = 0),

we find x(u0) corresponding to 1-tree of cost 130:

x12 = x13 = x23 = x34 = x35 = 1 and xij = 0 for all other {i , j} ∈ E
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Knowing x(u0), we can compute w(u0) = 130 + 0 (cost of 1-tree + 2
P

i∈V u0i ).

Subgradient

γ
0
=











0
0
�2
1
1











Update Lagrange multipliers:

u
1
= u

0
+

(ŵ � w(u0))

kγ
0
k2

γ
0
= 0 +

(148 � 130)

6











0
0
�2
1
1











=











0
0
�6
3
3











Since

C
0

=













− 30 26 50 40
− − 24 40 50
− − − 24 26
− − − − 30
− − − − −













we have

C
1

=













− 30 32 47 37
− − 30 37 47
− − − 27 29
− − − − 24
− − − − −
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As optimal solution x(u1) of Lagrangian subproblem with matrix C1 we find 1-tree of cost 143:

x12 = x13 = x23 = x34 = x45 = 1 and xij = 0 for all other {i , j} ∈ E

and w(u1) = 143 + 2
P

i∈V u1i = 143.

Since

γ
1
=











0
0
�1
0
1











,

we have

u
2
= u

1
+

(ŵ � w(u1))

kγ
1
k2

γ
1
=











0
0
�6
3
3











+
(148 � 143)

2











0
0
�1
0
1











=











0
0

−17
2
3
11
2
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Therefore

C
2

=













− 30 34.5 47 34.5
− − 32.5 37 44.5
− − − 29.5 29
− − − − 21.5
− − − − −













and we obtain x(u2) that corresponds to 1-tree of cost 147.5:

x12 = x15 = x23 = x35 = x45 = 1 and xij = 0 for all other {i , j} ∈ E

and w(u2) = 147.5 + 0.

Since all costs ce are integer, the feasible solution of cost 148 found by the heuristic is optimal!
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