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Course’s aim: Present the main concepts and methods of discrete and nonlinear
optimization, covering also modeling and application aspects.

Link to detailed program
" Discrete Optimization” and "Nonlinear Optimization” (5 credits) correspond to
two overlapping parts of " Optimization” (8 credits).

- Discrete Optimization includes Chapters 1-3, the exercise sets n. 1-5, the
computer labs n. 1-3, including a brief review of AMPL/Python basics.

- Nonlinear Optimization includes Chapters 1, 2, 4 and 5, the exercise sets 1, 6-9,
the computer labs 4-6, including a brief review MATEAB/Python basics.

Edoardo Amaldi (PoliMI) Optimization A.A. 2023-24 2/6


https://www11.ceda.polimi.it/schedaincarico/schedaincarico/controller/scheda_pubblica/SchedaPublic.do?&evn_default=evento&c_classe=811915&polij_device_category=DESKTOP&__pj0=0&__pj1=20b3422b4f7327313977dc200a4a6416

Prerequisites ot Co-s orar SReRlp O Mﬁt’m

NS5y L W
oot AN ST

For Discrete Optimization part:
o linear programming (simplex algorithm, LP duality)
@ graph optimization (minimum spanning tree, maximum flow)
@ basics of integer linear programming (Branch and Bound, Gomory cuts)

@ basics of Python/AMPL modeling language

For Nonlinear Optimization part: basics of Python.
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Schedule

e Monday 13.15-15.15 Room B.4.4
@ Thursday 13.15- 15.15 Room B.2.4
o Friday 13.15 - 16.15 (L + Ex/Lab) Room B.4.4

Lectures (L), exercises (E) and computer laboratory (Lab) sessions.

Computer laboratory sessions

e Discrete Optimization part: one hour on AMPL/Python, 3 two-hour
meetings using AMPL /Python

@ Nonlinear Optimization part: one hour on MATLAB/Python (Optimization
toolbox), 3 two-hour meetings using MATLAB/Python.
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Instructors

@ Lectures:
» Edoardo Amaldi edoardo.amaldi@polimi.it
e Exercises:
» Marta Pascoal marta.brazpascoal@polimi.it

e Computer labs:

» Maximiliano Cubillos maximiliano.cubillos@polimi.it
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Teaching material

e Material for the lectures, exercises and computer labs made available
progressively on WeBeep.

@ List of references in the course program.

Evaluation
Written exam covering all the material presented in the lectures and the meetings

devoted to the exercises and the computer labs.

For students enrolled in D.O. or N.O., the exam will cover only the corresponding
part of the material. See course program for details.

Students enrolled in both D.O. and N. O. (5 credits each) take the exam of

" Optimization” (8 credits) and conduct a project/individual study (2 credits) to
be defined with the instructor.
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Chapter 1: Introduction

Optimization is an active and successful branch of applied mathematics with a
very wide range of relevant applications.

Given X CR" and f: X — R to be minimized, find an optimal solution x* € X,
i.e., such that

f(x*) < f(x) Vx € X.

Course’s aim: Present the main concepts and methods of discrete and nonlinear
(continuous) optimization, covering also modeling aspects.

See course’s information slides also for prerequisites and joint courses.
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Many decision-making problems cannot be appropriately formulated /approximated

in terms of linear models due to intrinsic nonlinearity.

Examples

1) Production planning

Determine the production levels so as to maximize the total profit while respecting

the resource availability constraints.

- "Price elasticity” : unit profit decreases when amount produced increases.
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- "Economy of scale”: unit cost often decreases when amount produced increases.
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2) Discrete decisions modeled with binary/integer variables

Special type of nonlinearity: [x € Z/«< sin(rx) = 0
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1.1 Examples of problems and models
1) Location and transportation

Given
@ m warehouses, indexed by i = 1...m, with capacity p; and area A; C R?

e n clients with coordinates (a;, b;) and demand d;, with j=1...n

decide where to locate warehouses and how to serve clients so as to minimize
transportation costs while respecting capacities and demands.
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1.1 Examples of problems and models
1) Location and transportation

Given
@ m warehouses, indexed by i = 1...m, with capacity p; and area A; C R?

e n clients with coordinates (aj, b;) and demand d;, with j =1...n,

decide where to locate warehouses and how to serve clients so as to minimize
transportation costs while respecting capacities and demands.

Assumptions: single type of product and >, p; > Z};l d;
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Decision variables:

Optimization model:
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2) Image reconstruction (Computerized Tomography)

Volume V' C R3 subdivided into n small cubes V; (" voxels").

Assumption: matter density is constant within each voxel.

Problem: Given measurments of m beams, reconstruct 2-D image of V' ("slice”),
i.e., determine the density x; for each Vj. ™\ cwuwss ey G A
_WW

otV
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2) Image reconstruction (Computerized Tomography)

Volume V C R? subdivided into n small cubes V; ("voxels").

Assumption: matter density is constant within each voxel.

Problem: Given measurments of m beams, reconstruct 2-D image of V ("slice”),
i.e., determine the density x; for each V;.

2-D illustration:

bewmm 1 besun 1

For i-th beam: aj; is the path length within V;,

Io is the X-ray intensity at source and /; at the exit.
The i-th beam total lo —attenuation@is linear in the density: @:1 a,-jﬂ
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Given m beams with prescribed directions,

1 I
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x>0  j=1,...,n

is usually

infeasible due to measurement errors, non uniformity of Vis,...
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Given m beams with prescribed directions,

n IO ]
E a,-ij-:b,-zlogT i=1,...,m
j=1 ’

xi >0 j=1...,n

is usually infeasible due to measurement errors, non uniformity of Vjs,...

Possibile formulation:

min 377, (b — Z}lzl ajx;)?

st. x>0 j=1,...,n
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Given m beams with prescribed directions,

n IO ]
E a,-jxj:b,-zlogT i=1,...,m
j=1 ’

xi >0 j=1...,n

is usually infeasible due to measurement errors, non uniformity of Vjs,...

Possibile formulation:

min 377, (b — E}’:l ajjx;)?

st. x>0 j=1,...,n

Since n > m, to avoid alternative optimal solutions we may minimize:

f(g):Z(b;—Za;jxjf+5ij with § >0
j=1 j=1

i=1
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f(x) may also involve

@ nonlinear terms accounting for the properties of matter/image
@ stochastic model of attenuation and maximum likelihood estimator.

Also optimize the number/directions of beams.

4-D optimization to account for respiratory motion.
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3) Combinatorial auctions

Participants (bidders) can place bids on combinations of discrete items.

Examples: airport time slots, wireless bandwidth, delivery routes, railroad
segments, rare stamps or coins,...

Consider
@ set N of n bidders,

@ set M of m distinct items,

o for every S C M, bj(S) is the bid that j € N is willing to pay for S.
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3) Combinatorial auctions

Participants (bidders) can place bids on combinations of discrete items.

Examples: airport time slots, wireless bandwidth, delivery routes, railroad

segments, rare stamps or coins,...
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@ set N of n bidders, ? :0 o

@ set M of m distinct items,

o for every S C M, bj(S) is the bid that j € N is willing to pay for S.

Assumption: if SN T =0 then b;j(S)+ bj(T) < bj(SUT)
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Key problem: Determine the winner of each item so as to maximize total revenue
For every SC M
ot

° b(S) = maXjen bJ(S)
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General optimization problem

- S N )
Comin ) T
\‘ sit. g(x)<0” 1<i<m ‘J

L KESQR”’\,J\Q;I:

cors it

S —

- the algebraic and set constraints define the feasible region
X=5N{xeR" : gi(x)<0,1<i<m},
where gi: S —>Rfori=1,...,m.

- objective function f(x) with f: X — R.
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Assume w.l.0.g. that

- minimization problem since

: xe€ X} =—min{—f(x) : xe X}.

max{f(x)

lllustration:
] - ap(x)
/ |

/ Sex) ‘

- all algebraic constraints are inequality constraints since

{ g(x) <0
g(x) >0.

g(x)=0
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Definition
i) A feasible solution x* € X is a global optimum if

f(x") < flx) VxeX.

ii) A feasible solution X € X is a local optimum if 3 ¢ > 0 such that
f(x) <flx)  VxeXNN(x)

where N.(%) = {x € X: ||x — X|| < €. (
o~ %Nm

o™ AAS
Illustration:

For difficult problems, we settle for good local optima within a reasonable
computing time.
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Main classes of optimization problems

Terminology: programming = optimization

f gi S problem type
linear linear S=R" Linear Programming (LP)
linear linear sCz” Integer LP (ILP)
linear linear S CZ" xR"™ with n=n1 + ny Mixed Integer LP (MILP)
at least one nonlinear SCR" Nonlinear Programming (NLP)
at least one nonlinear | S C Z™ x R™ with n=n; + ny Mixed Integer NLP (MINLP)

Some important special cases:
Quadratic programming: f(x) = xT Qx + c¢Tx with linear constraints

Convex programming: functions f and g;s and set S are convex.
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Some fields of application

@ health care planning and management (treatment planning, workforce
scheduling, operating theater scheduling,...)

L

logistics (location of plants and services, transportation, routing) and supply
chain design and management

@ data mining and machine learning: classification, clustering, approximation,..

®

optimal control (determine the trajectory of a robot arm, airplane, shuttle)

L

computational biology (determine the 3-D structure of proteins,...)

economics (risk management, portfolio optimization, combinatorial auctions,
equilibria of games,...)

network planning and management (wired and wireless telecommunications,
electric networks,...)

production planning and inventory management (manufacturing, chemical
processes, energy generation,...)
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Some fields of application

@ management of environmental and territorial resources (water, forest,...)

design of experiments (for chemical and pharmaceutical companies)

signal and image processing (2-D and 3-D reconstruction)

statistics (e.g., nonlinear regression, estimation of distribution parameters)

agriculture and agri-food industry

@ dimensioning and optimization of structures (bridge, aircraft profile,...)
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2.1 Basic concepts

In R" with Euclidean norm

@ x € S CR"is an interior point of S if 3 & > 0 such that
B:(x)={y eR" : [y —x|]| <e}CS.

@ x € R" is a boundary point of S if, for every £ > 0, B-(x) contains at least one
point of S and one point of R"\ S.

@ Set of all interior points of S C R" is the interior of S, denoted by int(S).

@ Set of all boundary points of S is the boundary of S, denoted by 9(S).

lllustrations:
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In R” with Euclidean norm

@ SCR"isopenif S=int(S); S is closed if its complement is open.

Intuitively, a closed set contains all the points in 9(S).
@ S CR"is bounded if 3 M > 0 such that ||x|| < M for every x € S.
@ S C R” closed and bounded is compact.

Illustrations:
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Properties:

S CR"is closed if and only if every sequence {x;}ien C S that converges, converges to
x€S.

S CR" is compact if and only if every sequence {x;}ien C S admits a subsequence that
converges to a point x € S.

For convex analysis see:

Bazaraa, Sherali, Shetty, Nonlinear Programming — Theory and Algorithms, third edition,
Wiley Interscience, 2006 (Chapters 2 and 3)
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Existence of an optimal solution B e

0,5‘ M?{

In general, when minimizing f : S C R" — R, we only know that a largest lower bound

(infimum) exists, that is
inf f(x).

x€eS
Theorem (Weierstrass):

Let S C R” be nonempty and compact, and f : S — R be continuous. Then 3 x* € §
h that|f(x*) < f f e€Ss. -
suc a (é,),:x(é)( or every x cop Elan wpeprm o coeeel o

O p AT A AU
Examples where the result does not hold:
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When x* € S exists, we can write minges f(x).
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Cones and affine subspaces

Consider any S C R”

Definition: [cone(S))denotes the set of all conic combinations of points of S, i.e., all
X = 277:101'5; with x;,...,x, € Sand a; > 0 for every i, 1 <i < m.

Examples: ?Izedral cones and "ice cream” cones

Definition: @EEYdenotes the smallest affine subspace that contains S.

aff(S) coincides with the set of all affine combinations of points in S, i.e., all
x= i aix;withx;,...,x, €85 >7" ai=1 and aj € R forevery i, 1 < i< m.

Examples:

o [
S _— e
e —
e -~ - /s, ///
— o R / . : /
L T ogpes
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2.2 Elements of convex analysis

Definitions:

— <
P
A,
=
- C C R"is convex if

ax;+(1—a)x, € € Vxq,x,€ C and Va€[0,1].

- x € R" is a convex combination of x;,...,x, € R" if

m
x=>
i=

Qi X; — /
- /
1
A L
with 37 ;i =1and a; > 0 for every i, 1 < i< m. <«
ISP =
€ axorr o=, SO Py
- > =
// @ﬂ%t s u,\,-c.y' ':?_p—?»*d’&"‘
[ \/
o . 72
Property: If C; with i =1,..., k are convex, then N_, C; is convex. ¢/>

oo
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Examples of convex sets

1) Hyperplane H = {x € R" : p‘x = 3} with p # 0.

"y

x-

~_ Vx 92> = P - }
72 =5 A= Jrenmi RT(x-£3=0
N 2
_\\"Z V’%:%f?- ‘ﬂ{’mgwg eﬁ s
T

N.B.: H is closed since H = 9(H)

2) Closed half-spaces H" = {x € R" : p‘x >} and H™ = {x € R"
p#0.
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3) Feasible region X = {x € R" : Ax > b, x > 0} of a Linear Program (LP)

///// st Ax>
;// ? x>0

X is a convex and closed subset (intersection of

m + n closed half-spaces if A € R™*").
L M corma it

Definition: The intersection of a finite number of closed half-spaces is a polyedron?

\/7

Illustration: [

\

N.B.: The set of optimal solutions of a LP is a polyhedron (add ctx = z* with optimal z*)
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Convex hulls and extreme points
Definition: The convex hull of S C R”, denoted by @3115;] is the intersection of all

convex sets containing S.

lllustration: e ~— /

Equivalent characterizations (external/internal descriptions): conv(S) and set of all convex
combinations of points in S.

Definition: Given C C R" convex, x € C is an extreme point of C if it cannot be
expressed as convex combination of two different points of C, that is

x=ax; +(1—a)x, withx;,x, € Candac€(0,1)

implies that x; = x,.

Examples:
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Projection on a convex set

Lemma (Projection):

Let C C R” be nonempty, closed and convex, then for every/y ¢ (] there exists a unique
X' € C[at minimum distance from y.

Moreover, x" € C is the closest point to y if and only if *@»gjf_ﬁ‘jffg'

(y—x)(x-x)<0 vxeC.

Geometric llustration:

Definition: x’ is the projection of yon C.
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Separation theorem

Geometrically intuitive but fundamental resul SPNEET

t.
2
Theorem (Separating hyperplane)

Let C C R” be nonempty, closed and convex and@@?q thenFT/EE Hg’/s_ggw

[E_:X<Byforevery5€ C.

3 hyperplane H={x € R" : Btg = 3} with p # 0 separating y from C, i.e., such that
CCH ={xeR": BLS,@} and y & H™ (th>5)

Illustration: |
“‘,‘._‘/3‘72
L s 5¢gc
\\
x\ !e,,.f
\a
Proof: el Cornrn W
- et R) tL2are axoot m?_;%(é%')’:fr(’:,*
Ao e e S = -
o= e j&% Txx 92T =P
oAU, v 77 92T >
! ca_
. yxeC %fx:;n o comysan
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Consequences of separation theorem

1) Any nonempty, closed and convex set C C R" is the intersection of all closed
half-spaces containing it. 7,,>c _ V\‘\(—\j\? i’;”’"“gﬁ*"f%—
S . _—X zee
re N\ .2

Definition: Let S C R" with S # ) and X € 9(S) ( boundary w.r.t. affS) ),

H={x€R" : p'(x —X) =0} is a supporting hyperplane of S at x if S C H™ or
S C H*.

Illustration: \ £e9s
\ %00
\

2) Supporting hyperplane:

If C # 0 is convex then for every[X € 9(C)/there exists (at least) a supporting
hyperplane H at X, i.e., 3 p # 0 such that p‘(x —X) < 0, for each x € C.

Examples: _
S N e
C |

yf"'/y —

xe2S Lot s

tone 27 A -
( o ¢ /@MW S
AN
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Central result of Optimization (Game theory) from which we will derive the optimality
conditions for Nonlinear Optimization.

o TR
3) Farkas Lemma:

Let A€ R™" and b € R™. Then

] o S — P
3 x € R” such that [Ax = bjand/x > 0/ < [Ay € R"/such that/y’A < 0'/and/y'b > 0,
o Reotu~R “O2

Provides an infeasibility certificate, also known as theorem of the alternative.
Alternative: exactly one of Ax = b,x >0 and y*A < 0% y*b >0 is feasible.

Geometric interpretation: R e IS ST 2

b belongs to (convex) cone generated by the columns of A, i.e.
cone(A)={z€R™ : z= ZJ'-’:lxjAj,xl >0,...,xp >0}
if and only if no hyperplane separating b from cone(A) exists.

Alternative: @ € go?nje(éyp_r@ig Egﬁe@ﬁ
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Alternative:

b € cone(A)orb & cone(A)

Proof (Farkas Lemma):

O ot AL =6 (e oo et CoanrR)

Son £z 2
(-%)Co,vu\) 0% 6 STAE O e rove TS

sThb= FCAEDS (ZTANE so S TR FERE srase
~o =ze
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2.2.2 Convex functions

Definitions:
@ A function f : C — R defined on a convex set C C R" is convex if
flax; + (1 —a)x,) < af(x;)+ (1 - a)f(x,) Vx;,x, € C and Va€[0,1],

) Sraasd.

/
T spmar + €4 ) Pexed
// ~e

|
| _Praxes (- RT)
| i >

Xz

@ f is strictly convex if the inequality holds with < for all x;,x, € C with x; # x,
and a € (0,1).

@ f is concave if —f is convex; f is linear if it is both convex and concave.
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Ceturagan, CorvexIE)
. ere © £ .:/a\:«—a ol P Ewetuone
Definitions: f

\
@ The epigraph of f : S C R” — R, denoted by epi(f), is the subset of R™"*

epi(f) ={(x,y) € SXR : o= e }.

@ Let f: C — R be convex, the domain of f is the subset of R”

dom(f) = {x € C : f(x) < +oo}.
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Properties:

Let C CR" with C # 0 and f : C — R be convex.

@ For each B € R (also 8 € +0), the level sets
Lg={xe C:f(x)<B} and {xe C:f(x)<p}

are convex subsets of R".
N

|| ,,/ B

T I p *mﬂ T

l J M ( / r k
_,F;L%L}

@ f is continuous in the relative interior (with respect to aff C)) of its domain.

" Lspsnee % e

1

| Coo Lo Cuctuor
B o Bl

@ [f is convex]if and only if @(fjjgéjog;ex subset|of R""" (exercise 1.5).
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. . connve
Optimal solution of convex problems <
Consider minyeccrn f(x) where C CR" and f : C — R are convex.

Proposition:
i) If C and f are convex, each local minimum of f on C is a global minimum.
ii) If f is strictly convex on (C 3 at most one global minimum (if not unbounded).

C cornves<

Proof:
' A A FxPEC o 298 mov
1) 3 st X' O o KLsc a o conve~
) ﬁmf&wf Fex¥y < Foxt). Was con o) €Re Convax

- (k") Yo o]
F( it cum ) wF) S e feal) F (e JOET) S 7

*‘3"(5')
Lo ‘Coct LT
‘?,-,Go/) c,g/v-r.,\,nd/ucta '6' s ool
300 s Avon SN S2 oL <
| F o 2L oy €D
(2 o otoetR) convaX o )_(,_&V ==
2y Y }Dwxmrt‘? 5 &SR e A
< Fo- Q.
%é%v*gsﬁ € C ~ Lo
ke tomct corve s SE) %9 Bo ')"“"7’2)v - 55 cornSt
O o @y ¢ = P = 5 e ot
\UD/‘i'a‘\«@—&%‘:‘S'Lw) = E\(fo'“‘ ) zDD - e s e85
z

=2y ot st M*%o,»@:_
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Special case: Linear programming (LP) problems

min c'x
s.t. Ax>b
x>0

Proposition:
Given any LP with P={x € R" : Ax > b,x > 0} # 0, then either 3 (at least) one

optimal extreme point or the objective function value is unbounded below over P.

Geometric illustration:

Edoardo Amaldi (PoliMI) Optimization Academic year 2023-24 21/25



Characterizations of convex functions

Proposition 1: f: C — R of class C* with nonempty convex and open C C R” is

gconvex if and only if
lf(x > f(x )+ V* f(x)(x—x) Vg,XhEJC.—]

- \',,,

f is strictly convex if and only if |nequaI|ty holds with > for all x,x € C with x # X.

Y otnr Temes /S Comst oo~ Wn)Ror Qprasicy
‘f 2 o fons - t_g,?_r:w e e
(A o s

Geometric interpretation:

The linear approximation of f at X (1st order Taylor's expansion) bounds below f(x) and

(% )ermt s (i~ (X ) =@+ V@ x)

is a supporting hyperplane of@i(f)]alw with epi(f) C H™.
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Proposition 2: f : C — R of class C* with nonempty convex and open C C R” is

convex|if and only if the Hessian matrix V?f(x) = (%) is[positive
i OXj
semidefinite/at every x € C.

For f € C?, if V2f(x) is positive definite Vx € C then f(x) is strictly convex.

N.B.: Sufficient condition not necessary: X

Definition:
A symmetric matrix A n X n is positive definite if XtAX > 0 VyeR"withy #0,
A symmetric matrix A n X n is positive semidefinite if XtAX > 0 VyeR"

Equivalent definitions: based on the sign of the eigenvalues/principal minors of A or of
the diagonal coefficients of specific factorizations of A (e.g., Cholesky factorization).
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Convexity-preserving operations

Certain operations preserve the convexity of functions:

@ weigthed sum with non-negative weights

@ pointwise maximum

o ... //

See exercise 1.4
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Subgradients of convex/concave functions

. . oyt .
Convex/concave not everywhere differentiable (continuous) functions, e.g. f(x) = |x|.
Conto v ofGon~ ) LmecaolR) 7

Lo cm,se;ggg At T \\
| \——/
| ]

1

Generalization of the concept of gradient for C* functions to piecewise C* functions.

_ G

~rech )
ey €R"is a subgradient of f at x € Cif ~ —— =% o R charonS0uesE>

f(x) > f(x) +f(§—x) vx € C,

e The subdifferential, denoted by 9f(x), is the set of all the subgradients of f at x.

Example: f(x) = x?, the only subgradient at x =3 is y = 6. \ 1 Pz
2 _ 2 +5 v
OF (x=2)"= > S Cay= -~
- 5= S+6(x"3) S~ AL
= Peo=xtz Gx-S- frar+ §Cx=3 — s &%%;;3%
ce 3 oA R — — Ter-
=> x-—73 o 7€ 4,47
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Other examples:

1) For f(x) = |x|, \-/\

| €on x>e
ft 4,-1_7 Con =0

=-<4 Eon xTO

2) Consider f(x) = min{fi(x), f2(x)} with fi(x) = 4 — |x| and f(x) = 4 — (x — 2)%.

F(x) = 4 — x 1<x<4
T 4—(x—2)* otherwise
Edoardo Amaldi (PoliMI) Optimization Academic year 2023-24
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2 f<

@K

_ Bou XE (DG
> =-+

Cor w4 o~ x2>GQ
@’/x)=-'2(’<-7-))

A
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Properties:

Let@Q R" g@@: C — R be convex.

1) f admits at least a subgradient at every interior point X of C.
In particular, if X € int(C) then 3 v € R” such that
H={(x,y) eR™ : y = (%) +7'(x - %)}
is a supporting hyperplane of epi(f) at (X, f(X)).
T of ot Ranst v Mleaadasnt o f Coyrax

St 0N onst ’}’ & (Ccorvex)

tRa ot Q20 wnreodionito
() et & S€ ot

2)If x e C%&; is a nonempty, convex, closed and bounded set.

3)D|s a 1g(|oba ) minimum of f on C if and only if@e?@*ﬂ
,,Q,:rc =e/aa€f

Je = fea=r+ o (x—&7)
= RIS
) ’;.Z;’;',’a_,oe ofc==))
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3.1 Integer Programming models

A wide variety of decision-making problems in science, engineering and management can
be formulated as discrete optimization problems:

mineex c(x) & WELEE]

where X discrete set and ¢ : X — R.

A natural and systematic way to tackle them is as Integer Optimization problems.

Definitions: A generic Mixed Integer Linear Programming (MILP) problem is

“

min cix o — "2
s.t. Ax > b eSO e
n n 7 r(v\m:wvs—@@: e .
x €Z™ x R™

with A € Zm<(mtm) ¢ ¢ zm¥m and b € Z™.

If x; € Z for all j, it is an Integer Linear Programming (ILP) problem.

If x; € {0,1} for all j, it is a Binary Linear Programming (0-1-ILP) problem.
W.l.o.g. only inequalities and all coefficients are integer. <« TS S8R " T
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Recall: &Eizis nonlinear constraint

Proposition: 0-1-ILP is NP-hard, (M)ILP are at least as difficult.

Theory: No algorithm can find, for every instance of 0-1-ILP (ILP/MILP), an optimal
solution in polynomial time in the instance size, unless P=NP.

Practice: Many medium-size (M)ILPs are extremely challenging!

Al Sl e LR AT
kw\—% w mat o >R ont

Feasible regions of ILP/MILP: xel R
A
‘ ~_ - mivp
/
X
1 L xeez
/
. . . . <
(M)ILP is a powerful and versatile modeling/solution framework. %W
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3.1.1 Modeling techniques and examples

® & o o o ¢ o

binary choice | ke,

association between entities \

forcing constraints \ Mb@v

piecewise linear cost functions \

modeling with exponentially many constraints

disjunctive constraints

linearizations
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1) Binary choice
A binary variable allows to model a choice between two alternatives.

Example 1: Knapsack problem

Given
@ n objects
@ profit p; and weight a; for each object i, with 1 </ < n
@ knapsack capacity b

decide which objects to select so as to maximize total profit while respecting the
capacity constraint.

ILP formulation
o e s
VAL ‘4:' P Syact W W= seQoct o

XD =Zr S | sA-RAwIAL

Yo = LI
ML prne ST TR RE
ot Sm e

Xz e fcm,,? v

b SEEShed

Binary knapsack is NP-hard.
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Example 2: Set Covering/Packing/Partitioning problems
Given
@ groundset M = {1,2,...,m} with 1 < i< m,
@ collection {Mi, ..., M,} of subsets indexed by N = {1,...,n} (M; C M for j € N),
@ a cost/weight ¢; for each M; with j € N,
a subset of indices F C N defines a
@ cover of M if Uic,M; = M
@ packing of M if M "M, =0 Vji,p € F, 1 # o
@ partition of M if both a cover and a packing of M

Total cost/weight of a subset indexed by F C N'is 3, ;.

Illustrations: Ma e M ; Mg, M
q D ’
| ‘ . “ @MQ
L
Feover = {%.2/3; ch%=f2/5,'7; F—,A«'t.‘?"ilzfc‘;
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Set Covering problem:

Given M ={1,2,...,m}, {My,...,M,} indexed by N = {1,...,n}, and a cost ¢; of M;

for each j € N, find a cover of M with minimum_total cost. A = et R
/o] A\

A= 7, |
.U

Parameters: incidence matrix A = [a;] with a; = 1 if i € M; and a;; = 0 otherwise

ILP formulation

Variables:
ijf‘iyv:,&pmjwoq\vﬂnu‘;m( V)'

~
o S S5 X5 .
%M N o ons T anCly w"bM_';\

— c LD carre!
At 5 eup ks = e B (ST ot et
J

;€ 7o,w} VS
Set Covering is NP-hard.

Application: Emergency service location (ambulances or fire stations)

M = { areas to be covered } and N = { candidate sites }
M; = { areas reachable in at most 7 minutes from candidate site j }

Decide where to locate ambulances so as to minimize the total cost, while guaranteeing that the
next call is served within 7 minutes.
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Set Packing problem:

A S S5 Lo .
7 TOCIMNE | cloron O
o . . X “ Mt
where the ¢; represent " profits” T Z e S v [ Tt Sanca_ /
xsefontt

Application: Combinatorial auctions (see introduction)
Determine the winner of each item so as to maximize total revenue:
max ngM b(S)xs

s.t. ZSQM:iESXSSl vieM
xs € {0,1} VS C M.

Set Packing is NP-hard.
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Set Partitioning problem:

n
min  or max chxj- cAx=1, xe {0,1}"
=1
aen/ anmis = G35
ot ? g,..;_;x;'- - (

x;€ §o,t§

where ¢;s represent " costs” or " profits” ST Mcz.>

o) Mfm

Application: Airline crew scheduling (see Computer Lab 3)

€, T
/ S STe \| we Compste

? Lfgf 2200 ) (ST= Bas ")

s

us. o0

Given planning horizon.

M = { flight legs } - single takeoff-landing phases to be carried out within a predefined
time window.

M; = { feasible subsets of flight legs } doable by same crew respecting all constraints
(e.g., compatible flights, rest periods, total flight time,...).

Assign the crews to the flight legs so as to minimize total cost.

Other application: distribution planning (assign customers to routes)

Set Partitioning is NP-hard.
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2) Association between entities

Binary variables allow to model associations between two (several) entities.

Example 3: Assignment problem (W$M>

Given

@ n projects and n persons

@ cost ¢ for assigning project / to person j, Vi,j € {1,...,n}
decide which project to assign to each person so as to minimize the total cost while
completing all projects.

Assumptions: every person can perform any project, and each person (project) must be
assigned to a single project (person).

ILP formulation

Vool o ool
L Lo sy
__:Zj'vl_] - B AN T VS s ¥ £lom o
XN T o | ore. Tt TP ot
~ s P
=S = cus s "Sﬁ%&f—w
naIL I o SE con yaramn oot o, R X

s i e s =k Yo (Lt et
Jj= . 13
oot~ A
ERME ST CR (= T )

xiy€ IOl
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3) Forcing constraints

”

To impose that "a decision X can be made(only ifla decision Y has also been made”.

Example 4: Uncapacitated Facility Location (UFL) et G Couglodoke
Given e ; . T g =

e M={1,2,...,m} clients, i € M TSen
e N=1{1,2,...,n} candidate sites where a depot can be located, j € N
@ fixed cost f; for opening depot in j, Vj € N

@ cj transportation cost if the whole demand of client i is served from depot j,
vie M,VjeN
roasararnotison e o)
decide where to locate the de ots and how to serve the clients so as to minimize the

total costs while satlsfylng all demands.

Illustration: e sl

= o 2 cart O

| x5 = % %P_,é) Jo, o€ J

. [\ e Ccom] PRV
UFL is NP-hard. o Hops € I oyenesl

;O | W_.Qc»WwJ“‘D’

€ o3 ¥

.,Qa—c,l
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MILP formulation

Variables:
@ x; = fraction of demand of client / served by depot j, with 1 <i<m, 1<j<n
@ y; =1 if depot in j is opened and y; = 0 otherwise, with 1 < j <n

MusdsR  von Z £ Oy 9+ Z a’,

[V Ut 2 J’;L vkl
twftw Y sé PSSV}
Z_QV S oL

) Forornd
~t S xe3=t e ["“%@"’"_9_’;%{?,& €L Jo )

sem Sz w el
A O Lol e w22 oBBr o
PRTIE-RCV SN & 7iz o= "":,;m,"w ore P
wen (7 Fi: XwHZ
wocly €02 O \ o lus wmlnn A )
BT R o s xu3 S W ety KWWN‘T/J

i tomeo

ox Xuy > VL v
efo, ey Vi

Capacitated FL variant:

If di demand of client i and k; capacity of depot j, capacity constraints:
S daxe = ks 8

eV
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4) Piecewise linear cost functions

Continuous and binary variables allow to model nonconvex piecewise linear cost
functions.

Example 5: Minimization of piecewise linear cost functions

Arbitrary such f : [x xk] — R specified by (x, f(x")) with 1 < i< k and x' < ... < x*.

‘5’8"""‘ test
A I’BM =Cs/67

llustration min, cpa k) £(x):

OO0 “«L1Lo° M

OO oo

k.

Any x € [x17x"] and corresponding f(x) can be expressed as

X—Z)\X and f(x) = Z/\f ) with Z)\_l and Ai,..., M\ >0,

1 1 — ~
= = e
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Choice of Ajs is unique if at most two consecutive )\; can be nonzero.

For any x € [x', x™], x = \ix' + Xipax ™ with A + Xiyp = 1and A, >0, A1 >0
Dt n

X‘—L—"‘u

) XGC’(“-")“‘;"“7 ,Vva_—_«_(——‘)ld.—‘-b

e Cown Tone ?¢=?%/M@ww
2 aner) =
o €L w2 R G N e ==
ISR P r,\..-“"”/fﬂ_;_w..w
Lex) e [ 5 ([

AN
xe Cxtixd
Cor = g mamRetasl &2
Paa et 2-.:‘-.-.4. g,,:é’fx“') e
' w ( WCM:NMf >
ot Siea s = >QM—*@‘-‘J—I 3
axactey ove P tl 2O T 5e Liglwesl M7
G = % (thu»»r:we
st
s+

Eav
s ::—:f OV.:;_:.::;—';D D ol
ottt PO Dot
aeI e ()
222555
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5) Modeling with exponentially many constraints

Example 6: Asymmetric Traveling Salesman Problem (ATSP)

. we vl Q0 €Re
Given o2 S <

@ a complete directed graph G = (V, A) with n = |V/| nodes
@ a cost ¢j € R for each arc (i,j) € A (in case ¢j = o)

determine a Hamiltonian circuit (tour), i.e., a circuit that visits exactly once each node,

of minimum total cost.

Illustration: °
(3
e = SO oN
s ) —_ [t ol
\ 7=/ et o BT
N - o Loc S
o
< /
\ ‘Z
<
— 2
. . . . -
(n — 1)! Hamiltonian circuits frahnd
STARY - eV
wose T T VHRE
ATSP is NP-hard.
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Applications: logistics, microchip manufacturing, scheduling, (DNA) sequencing,...

Also symmetric TSP version with undirected graph G.
Website: http://www.math.uwaterloo.ca/tsp/

Many variants with

- time windows (earliest and latest arrival time)

- precedence constraints

- capacity constraint A

- several vehicles (" Vehicle Routing Problem” — VRP) K\ / >
VN
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http://www.math.uwaterloo.ca/tsp/

Two ILP formulations:

Nonol®o vy o e
o F s SR ST
v

Mty .
.o o, T
prapye A, xS €D 5 e
ool -
I cwy K4S
w (i IEA 2
’ Ve /Mwﬂnccm'p‘)"‘“) o ( )
st xuy = S ountesime O (3)
Sev\ey
Y v; walact o L
xwy = 4 Y BOWSSOR I (4)
Lev\iit

we SO «es
3‘4(S)=;/‘*'3’€’“ JES ;
\_ eLoruLcA'_q,a( et ‘JMAM'M ‘

o et SEV
) cnt et 3
= w yscve ST /-Md"th’"”
K-y —

ris€ 5T / o of <7

1
cle ot —Raest 2 - /
e, gt LSS

i €A
saze sl e PRt/
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Alternative ILP formulation

Substitute cut-set inequalities with the sub imination i ities:
S o <|S-1 VScVv,2<|s|<n-1 (5)
(1) EE(S) 3\

where £(S) ={(i,j)) €A : i€S,jeStfor SCV.  aoremsroe, Comfe”

o~
ottt
o
Illustration: s u-&cf‘%w
_Sev
T &

SN sz D e e

/ 7" —~ ., ) - =

/ -~ ) (NEES)
[
R
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6) Disjunctive constraints

Binary variables allow to impose disjunctive constraints such as:

. S — ERs Frdnfjuunrnn—
cither [axshl o (ax<hbl (s Fton

- 47 Caa el Sf R
Illustration: Ovttiacln F 59_7__:’5 LT (e s a

A -
N ~ e
| xS be 7 IR
| ﬁ ) Lo e
L/

S

\S

.
. ‘

v -
%ﬁc<f A — PR P

\
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Example 7: Scheduling problem (see Computer Lab 0)

Given
@ m machines and n products

@ for each product j, deadline d; and processing time pjx on machine k, with
1< k<m,
determine a schedule which minimizes the time needed to complete all products, while

satisfying all deadlines.

Products cannot be processed simultaneously on the same machine.
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7) Linearization of products of variables~

- Product of two (several) binary variables:

I @~ tCo —Dnlorre, Comsliiawnvto
o= 2=° 2x v ._z_xb.l/\/"*’_’se/%

;,7:'::@ z=0 z = re e

Sum & = =X 22 Yur2-L

ra =

- Product of a binary variable and a lboundedlcontinuo

Lz :}IE with y; € {0,1} for i = 1,2 and z € {0, 1}, can be replaced by

Eziz:ij with x € [0,u], y € {0,1} and z € [0, u], can be replaced by

s> st )
S 3 A, TR Cornotograsto !

__ Rewen oo
Rk FE XL 2 X o )
e Co.w,g,,e;m-«) ox 2 = 7
2eher = 2z k- (2o
=0 = 2=0 —_—

_ X_M_‘;o==)-a-=0
=fj ;;i/ < Ceprmtraint )

Question: If x; and x2 are continuous and bounded, can x; - x> be exactly linearized?
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Federico Angelo Mor


Federico Angelo Mor
no this variant does not work


3.2 Strong and ideal formulations

B e
In @g@riggtimi,zat@ good formulations contain a Il n variables n and
constraints m because the complexity of algorith rows polynomially in n and m.

The choice of the formulation does not critically affect the possibilit solving LPs.

For @sﬁaﬁnd MILPs, the choice of the formulation is crucial.
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3.2.1 Alternative and strong formulations o e o = B (O L e

€5 ILP) R e 2

Definition: Given any MILP 4 72 f 5
| /gu"
IS t t 5
Zypip = min ,c;erggX | ] \/
.t. Ay > b ‘
s AI,-: >2{Xj 28 -f7 N
Z_X,Z 0 integer/
[t -~ .
its linear programming (LP) relaxation is Wm*ff/ﬁld e ’
min ci1x+c¢ }
ZLp = mi 1X 2y 7 by
/ LRa e we
s.t. Aix+ Azy > b // \w‘_‘m@*
x>0,Jy > Qﬁ/ D
where y; € Z are omitted for all ;. a J

ﬂ

If y; € Z with 0 < y; < uj, then in LP relaxation y; € [0, u;]. /////// o5
Illustration: S N Yy

|
> [gaer = 2 o o f
W ,,,,,7~\1 -

-
SC MaAR
5;"‘“"%?:’ s —attion

Edoardo Amaldi (PoliMI) Optimization Academic year 2023-24 2/24



Obviously Xuyup C Xip where

Xuip ={(x,y) ER™ xZ™ : Aix+ Ay > b, x>0, y >0}

XLP:{(X7X)ERHIXR"2 D Aix+ Ay > b, x>0, y >0}

BT
Ve
Propos"ntion: For any minimization MILP, we have:
o 5 < tnun]
@ if optimal solution (xjp,y;,) of LP relaxation is integer (feasible for MILP), it is

also optimal for MILP.

For maximization problems, zmiLp < zip.
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. e P eoroctasl t> &R
Definition: NI L SR

A polyhedron P = {(x,y) € R™MT™ A x + Ay > b, x>0,y >0} C RM*™ js a )

formulation for a mixed integer set X C R™ x Z™ if and only if (2( fﬁfiﬁi(iﬂg"‘ixiznz .

lllustrations:

Observation: Any MILP admits an infinite number of alternative formulations.
Equivalent from MIP point of view but different LP relaxations.
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Examples:

1) Two alternative formulations for, TSP (cut-set or subtour-elimination constraints).

2) Original formulation for UFL:

LSS vt

min 37, Zf=1'2?xy + E;:l fiyi

o~ e

s.t. Soiaxi=1 YieM
Sy Xy < my; VjeN (1)
y; €{0,1} vjieN
0<x; <1 Vie M,jeN.

Alternative formulation: n linking constraints (1) are substituted with mn ones

xij < yj Vie/\/l,jEN.7 2)
OW&

oan e ore <o —Latren
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oo [l
Definition: ‘/ T
Given a mlxed integer set X C R™ x Z™ and two formulations P and P for X, Py is
Mz if [Py C Pyl Lﬂf Pe c Po l/V

e o
n,wveﬁ—Q?/;‘_

The lower bound provided by LP relaxation of P; is not smaller (weaker) than that of P,:
\ﬂ‘k\,.n, “wa) V-«\.v:jnw

. Q. Ot
3¥£;‘”$%«»: zup = min{c;x + ey (x,y) € X}
5 t&&f’:\:‘i—“‘.&i > min{cix+ Gy ¢ (x,y) € P}

o tRea~

Y

min{gig—l—géz D (x,y) € P2}

Two formulations may not be comparable.
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Examples:
1) Uncapacitated Facility Location (UFL)

Proposition: The LP relaxation of the MILP formulation with constraints x; < y; is
stronger than that with aggregated constraints > x; < my;.

Proof:
sz see
P = {(&z) ERMEN L Sy =1Vi, X5 < y; Viv), 0 < x; S1Vivj, 0<y; <1 Vj}

wlaxefvonm
/
Pr={(x,y) ER™™" 30 = 1Vi, T < my; ¥, 0 < xS 1%, 0< y; < 1))

=

1 — tla. O AIAT % r=,
Obviously P; C Py.— "\ °_’,sz5 et ?ﬁ{t&’i’é”’?’ & i g

=y Z,, s Srwe
( ) \ PRTEE TR e T ]—r Sk T MG T~ o
Exhibit (x,y) € P>\ P1: o~ -
3 . e o, wotee €M (e kkZ2 ontncen)
s S . Ran
- o b cRiavto.
€ xounes N Rt "-""Le‘; ..og) P T N St
”,&ie} ot x-&)‘:fo/ SHARan Nt - /
k=2 clomt tl F W o ( P
e e e e e e W piEde o "Z&?\wrt;-c, e ‘“f';e"
e — kg/ 7= ‘X"f‘) o, AT ARvRn =7
c o
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2) Symmetric TSP (STSP) = "< RoiiassBontad

e
STSP: Given undirected G = (V/, E) and cost c. for every e = {i, j} € E, determine a
Hamiltonian c¥cle of G (i.e., visiting each i € V exactly once) of minimum total cost.

M.@C_,N\QZIC:J;‘\-/\A\:Z? :-::'E\tskm Ke o xe='t wj@\—bicw
Two alternative formulations: — o e
min > cE CeXe — Sl I8 Ly 8 Fonorad
st Yespxe=2 €V (DEG) (= 825
x Lo~
mf;:"f’z"-éﬁ D ecs(s) Xe = 2 SCcV,S#£0 (cCUT)
(%~ . xe{0,1} ecE JED e ke mBtewno
) Sisd B
where 6(S) ={{i,j} € E:i€S,je V\S} 6(i)=0({i}) TN Caora e cancdes
- Gt @ @22 7)
min ZeeE CeXe
s.t. Decs(y Xe =2 ieV (DEG)
Decrs) Xe < IS -1 ScV,|S|>2 (SEC) —
Xee{o,l} eEE, ‘i‘>

where E(S) = {{i,j} € E : i€ S,j €S} \

(DEG), (SEC) and (CUT) are, respectively, the degree, subtour-elimination and cut-set
constraints.
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Let Psec and Py be the polyhedra (feasible regions) of the respective LP relaxations.

Proposition: The two formulations are Zequg]ﬁ[}f}trong (Psec = Peut).

See Exercise 2.3
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3.2.2 Ideal ILP formulations

Theorem (Meyer): Let X C R™ x Z™ be mixed integer feasible set of any MILP with
rational coefficients, then @nv@s a rational polyhedron. Moreover all extreme points
of conv(X) belong to X.

For bounded integer X, intuitive and no need for rational coefficients assumption.

Consequence:
min{c’x : x € X} = min{c‘x : x € conv(X)}

W
—eut ofEe o o) SROES

If we knew conv(X) explicitly, we could solve the (M)ILP by solving a single Linear

Program! e & Lt N, RO P) ke Rt 8P m.@ye&vx&g@ euc—
ATk T e R R e
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Definition: Let X C R™ Xx Z™ be any mixed integer feasible set, the ideal (perfect)
formulation for X is th hedron P C R™*" wichsziggiﬂv(X)?

Since it is often of exponential size or difficult to determine, we strive for strong formulations.

Examples:

1) Assignment problem

Natural ILP formulation:

min 320 300 CiXy

st YLixi=1 VY
Siaxg=1 Vi
xj € (0,1} Vi,V

Proposition:

P={xeR" : Y0 x; =1V, S0 xj = 1Vi, 0 < x; < 1Vi,j}

is an_ideal formulation for the Assignment problem. LIP sLomotiovy
Proof later
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2) Perfect Matching problem (PM)

PM: Given an undirected G = (V, E) with n = |V/| even and a cost c. for each
e ={i,j} € E, determine a perfect matching (i.e., subset of edges without common
nodes but incident to all nodes) of minimum total cost.

lllustration: Ce
e > — I~rtenne e,
"e‘-’“c;i’"k_’@?s SP ~ata®s / Q)
e et
v .
Y
ey
Coverimont b
€on ol ~oita i/ oS ﬁvm < o
Saloctt St R Ve ‘
2 et S 002
s -7 o X Slan
S etnll) W S
S e G s
Natural ILP formulation: )
min ZeeE CeXe

st DeespXe=1 VieV
xe €{0,1}  VecE,

where x. = 1 if e is selected, and x. = 0 otherwise.
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Clearly all x € {0, 1}“5| corresponding to perfect matchings satisfy:

d oxe>1 VS C V with |S]| odd.

ecs(S)
G5 2

VN fesy

Theorem (Edmonds):
v = {x € RIEI : Eeeé( Xe =1VieV, Yoy Xe > 1 vscv, 15| odd,

Wt/\'d_ W\mzi 0<Xe<1Ve€E}

is an ideal formulation for the Perfect Matching problem.
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3.2.3 Extended formulations

Iternative formulations can use additional (and/or/different variables.

Definition: The formulations including additional variables, are extended formulations.

Example: Uncapacitated Lot-Sizing (ULS)

One type of product and n periods.
-Le-i_;:w;_, o F

Given _Gunnr)

o g B R

~—QA
IS SA ST )

@ f; fixed cost for producing during period t
@ p: unit production cost in period t
@ h; unit storage cost in period t

@ d; demand in period t

determine a production plan for the next n periods that minimizes the total costs, while
satisfying demands.

Assumption: stock is empty at the beginning and at the end.
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MILP formulation " W
Variables: '+
@ x; = amount produced in period t, with 1 <t <n
@ y; = 1 if production occurs in period t and y: = 0 otherwise, with 1 <t <n

@ s, = amount in stock at the end of period t, with 0 < t < n
o

psolalnne
oo (et + G et Fore )
o (T T T T 9T

- Ao e eesrasl
YN aad co>t

vt pez
e elonia Cortiainl u.\)
ot ne;o.t_.,_—f-kt—“‘*' /&owwﬂ‘

xt owsl ¢
M= sde VE .20 )
——
e L e M o Gy
ne= 9 eat UMt reoan e
P = O E aaad

xePo=d Pr= xe= M2 o
reo DD xe= \) * “

e, xeZ O VE
7—e€?°"‘3 V€

e b,
— —
ot e ~

. eln odan of €R
SR R ot o |

Extension with minimum lot sizes.
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MILP extended formulation

LA AN

Jo~
a3
Wik S omesee 2N T 6 o
— / PPN 2] [';;/Wﬁn,q—.a,"
Variables: = @Mﬁ o o st 7 e
. _—t +
. . ot~ TS aSTOR)
Wt =  ormanaant oS

BT
o 2 e A
K + %‘_v‘:‘—e:m—eﬁ.

zo -

- ot —,Mt
S B s Penertoua

. o W)

()(;:.——.(2 wat =D tfz. 2ol ‘e::eﬂ”.,‘:wm\ —_

N\
\
T |
v TLRr
£l ancteadtesl TEC0 o (o
Maastsl . f B g P e e e el
Cuag Wae e e o
R é“_ e £z« \ “_Q:))-tﬁ Corns eI
e-n
- LG \ ~
owe = 4 E ) e 2 oee ve
( ,w‘ Xl .(,_é..:.
e E s v (et L e e
e ool —ewntd > AL = Jé“" Rk
E W, mte = O / :-e £Ra 2l
S=w . >
wat = de b ( Rt e
—~ —es el
S (=7
f;/’\"‘"c"e"n.,,,kw”t‘
wet = e e

o
T Tenl e
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3.2.4 Comparison between formulations

Consider an ILP formulation
min{c’x : x€ PLNZ"}
with @ ’g’]@ and an extended formulation
min{c’(x,w) : (x,w) € P,N(Z" x R"/)}
with Po C R X B oo s

Definition: Given a polyhedron P C R" x R",, the orthogonal gr/oiectiou of P onto the
x-subspace R" is the polyhedron proj, (P) = {x €R" : 3w € R" st. (x,w)€ P }.

-

To compare P; and extended formulation P>, we compare Py and proj, (P2).
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One way to determine the orthogonal projection of polyhedra onto subspaces:
R T R SN T

Fourier-Motzkin elimination method (1827)
Goal: find a feasible solution of Ax > b with A € R™*".

Idea: At each iteration eliminate one variable x; (derive an equivalent linear system
without x;), stop when a single variable is left.

Given Ax > b, suppose we wish to eliminate x;.
The equivalent system without x; includes
@ all inequalities of Ax > b in which x; does not appear,

@ the inequalities resulting from all the possible combinations of the upper and lower bounds
on x; implied by Ax > b.
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Example: P defined by x1 +x (3)
1
—-x1 +x (4)
2
—X (5)
Eliminate x, (project P onto subspace of x1):
SIS e 3-% S x
e et E 1 —
—eve X2 -x1 < X
[ o STt o / 2
(e / ( Xo
and obtain
3—x3 < 2 =
1 xu=I q
-x1 <2
2
hence the projection [1, 4].
Eliminate x; (project P onto subspace of x2): obtain 1 < x» < 2, hence the projection [1,2].
Complexity: Since at each step an inequality is derived for each pair of upper-lower
bounds, the number of constraints can grow exponentially in n.
SRR TN
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Comparing ULS formulations:

Consider the formulation @ r M= 2 A+
St = St—1 + X¢ — dt /“ Yt
Xt S Myt "// Vt (6)

5020,5t207xt20,0§yt§1 Vit
p%__;m_z,u/»zw&

and proj, ; ,(P2), with [P2[defined by

Zle Wit = dt Vt
<M
o= £2_‘.&1,\,__..* = t%; dt 7 © wir < :jtyl VI, t,1<i<t (7)
M S Xi = Zt:i Wit Vi (8)
. —~022> i .
= P ’_‘éq)ﬁ{;‘mﬁ Pa s = Z;:l Z:IllJrl Wit Vi (9)
A Wi > 0 Vit 1<i<t
xfld‘;‘f‘;( oo
o O=yst ve.

7 Jde Ve
Easy to verify thatL (Pz) C P1, »n#vgaw—rﬁf;m*,iiﬁ,’t o™
— - I RCe & iy, 5 2(P2)
AL
Proposition: P; is the ideal formulation of ULS.
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3.2.5 Stronger extended formulations

Look for an extended formulation whose projection is a better approximation of the ideal
formulation.

Example: Fixed charge network flow problem (FCNF):

. . LoRea Q20 “grovn NRMCED
Given a directed G = (V, A) with /’ e e

@ for each (i,j) € Aa xgd cost f;j > 0, unit cost ¢; and a capacity uj,
@ for each i € V a demand b; (b; < 0 sources, b; > 0 destinations) with >, b = 0

determine a feasible flow of minimum total cost which satisfies all demands and capacity
constraints.

. g P, cws
Illustration: (o /mu;)
5 o (/’\'\./SW e I
4 N o O~
/ / \) o V&IKW\'_:/Y.(_—ZV” VJ?/VV‘N"
[ 59 - Sk TS5 —ovonst)
\ Loy . Carnr R
-2 o \ |\ AN
| / )
| 4
- S o & >0%u
—5 3 <~

FCNF is NP-hard.
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Natural MILP formulation:

3
-t
Wl e,r.-&»r-t‘:‘z-._s.x\.—w odas e
g
Variables:

J
@ x; = amount of flow through (i, /), for all (i,j) € A

e y; =1if (i,j) is used and y; = 0 otherwise, for all (i,j) € A

N I w4
&
Ao > f o ks o Pl T ]

o Ot RSN U RIME,
sl Bvtesne
— — § e FRI3Y
AONEA ~ f\”‘_f
~ ) —~ b N .7,
T oxay — S = Be 2 w
ot VeV eZve <Y e R (10)
S I ~ = ~
ey o> v ) (11)
wRS Ylses
.
ey = e 5wy (SRS EaTEses)

XL Z o
Puyedoiw?

LP relaxation yields poor bounds because of weak coupling between xjs and y;s via (11).
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Multi-commodity extended MILP formulation:

Idea: Suppose w.l.o.g. 3 single source node s (bs = — Ziev\{s} b;) and decompose the

flows according to their destinations.

Hemtatvon avedes
SN Lol o~e

. ~ERlev N,
Denote K={ie V : b >0} C V. (235 —edE Bn Slestvaast,
oy

e Lo

Define one "commodity” for each k € K, with the flow variables x,-f-ﬂfor all (i,j) € A.

Define dff = —by if i =s, df = by if i = k, and df = 0 otherwise.

. see Computer Lab 1

Significantly stronger formulation of FCNF with |K| times more variables/constraints.
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3.2.6 Remarks on the strength and size of formulations

Definition: A compact formulation is a formulation with a number
of variables/constraints polynomial w.r.t. the instance size.

Remark 1: A compact extended formulation can be much weaker than an alternative
exponential-size formulation. e, et
P N A ST TG S ek

Example: ATSP

To exclude subtours, instead of (SEC) one can add, for each i € V, a variable t; representing the
" position” in which node i is visited in the tour and a set of constraints.

. see Computer Lab 1

Remark 2: A compact extended formulation can have a projection into the space of the
natural variables that is of exponential size.

Example: ATSP
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3.3 "Easy” ILP problems and totally unimodular matrices

Generic ILP I
. oe min{c’x : Ax = b, x € Z'} (1)

Tl Comitaon -t~

where A € Z™*" with n > m, and b € Z™.

P(b) ={x € R" : Ax = b,x > 0} polyhedron of LP relaxation.

Assumption: rank(A)=m, i.e, A redundant constraints.

In general, optimal solutions of LP relaxation are far away from those of (1).

Illustration:

If all vertices of P(b) are integral, ideal formulation and just need to solve LP relaxation.
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According to Linear Programming theory:

@ Any LP min{c'x : Ax = b, x > 0} with a finite optimal solution has an
optimal vertex (extreme point). . —eut €200 o o et tlg SO
0Realradc SR

@ To each vertex of P(b) corresponds (at least) one basic feasible solution
= (xg, xp) = (571279),

where B is a basis of A, i.e., an m X _m non-singular submatrix of A.

WSS AC)
7 R = K |\ ox= [T )
A= !1 (=) T e
on S TEOR
T ah S i Ky g

Consider any basis B. rOPubapapi=Sd

By partitioning columns of A into basic and non basic, Ax = b, x > 0 can be written as
Bxg + Nxpy = b with xg >0 and x, >0,
and in canonical form:
xg =B7'b— B 'Nxy with xg >0 and xy >0,

which emphasizes the basic feasible solution @Eéﬂli(fg, Q)(
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Observation: If an optimal basis B of LP relaxation of (1) has det(B) = £1,
then (xg,x,y) = (B7'b,0) is integral and also optimal for ILP (1).

B = -CcT

Proof: (2ecsCe tent d_.,—erm

Froor e, O 2o o By e B W
Ce Coe;] = (-u)=F0 datlBe;) o e S

&Coen
conll o~a .)Ntwmh
Bonea B corhomsr vsecen WJ.%E:LE_:;Q"' KA
G CLS ERa copeotoris orwt) ona- v o ol b o cumTimeo~

>Ls ontoce~,

_ o
wap gt (m) = St 2.5 (R Ty (B b 2 e ImERes

Only a sufficient condition for integrality of (xg,x,) = (B™'b,0).

~1p integral also if det(B) = 2 and all b; € Z are even.
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3.3.1 Totally unimodular matrices and optimal integer solutions

Definition: A € Z™*" is totally unimodular (TU) if every squared submatrix has a
determinant —1, 0 or 1.

Clearly, if Ais TU, a; € {—1,0,1} for all / and ;.

Examples: RS OS )
4+ o ©°

Vs T NP e V)
(2 =

Recall: For any B € R™X™ [ aplace expansion along any row i, 1 < i< m, is
det(B) = 3°1"; bjaj, where oy = (—1)"*det(B;;) are the cofactors of B.

Expansion also along any column j.
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Proposition:
o Ais TU if and only if/A7 is TU. 2R
o Ais TU if and only if [(A| In)|is Tu.-" S

e A’ obtained from A by permuting/changing the sign of some columns/rows is TU
if and only if Ais TU.

£l ‘Coerl TR
R )—e~o oo

Theorem 1:

If [Ale Z™" TU, [blintegral and [P(b)/= {x € R" : Ax = b,x > 0} # 0, then all
extreme points of P(b) are integral.

Proof: See observation.

From ILP point of view, if A is TU it suffices to solve the LP relaxation.
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Corollary: DTS BT SISeE e

S L7 et o) ar
If Ale ™" TU,@integral and I ’ 3
P(b)={x € R" : [Ax > b]x > 0} #0,
then all vertices of P(b) are integeral.
o S

Bs amsvi ,,f,&.x
Proof*: lacle =
Let X be any vertex of P(b).
First we show that (X, 8) with §:= AX — b is a vertex of

P'(b) :=={(x,s) € R"™™ : Ax—s=b,(x,s) > 0}.

If not, there would exist two distinct (x;,s;) and (x,,s,) of P’(b) such that
(%,8) = a(xq,s1) + (1 — a)(xy, s,) for some o with 0 < v < 1.

Since s; = Ax; —b>0and s, = Ax, — b > 0, x; and x, belong to P(b).

Moreover, (x;,5;) 7# (X5, S,) would imply x; # x, and hence X = ax; + (1 — a)x, could not be
a vertex of P(b).

Since A is TU, also (A| — Im) is TU. According to Theorem 1 for P’(b), (X,3) is integral, in
particular X.

O
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o M; t‘ve«)na o tmv, 1‘;’) w
Proposition (Sufflcnent conditions):
A€ 2™ is TU[if |

i) @i,{:gf)’ji} for all i and j,

ii) each column of A contains[at most two]nonzero coefficients

oA e

iii) set I of all row indices of A can be partitioned into /; and b such that,

for each column j withlfwolnonzero coefficients, we havegzie,1 aj = e, @ = 0. ]
—
N.B.: If a column has two nonzero coefficients of the same (different) sign/ their rows must
belong to different (same) subsets /; and h. '

(
entrran areed TF

MM%JI Con Sx RAT -
. . . .. - ,,oavﬂ. e~ > > 2,2t~
Examples of TU matrices (not) satisfying these conditions: ot M) e ,,,v-%-ﬂ-‘
MJMM /""::% -’e““)
S o =t O\ oz, 1o, et
/ -4, o o “ ‘ Te=T (’vq/v&.,
[ © + o -+ | z1,=¢ 7 ._~4_ \
\ o o %+ o T " o ‘ T
[ =< .
( /§T2
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e e T T
Characterization of TU matrices ?

_ Aot
Theorem 2: A € Z™*" is TU|if and only iflevery’l/’ C | = {1,..., m} of indices of the
rows of A can be partitioned into /{ and /; such that

(Zieq aij — Zie,z, aj) € {—1,0,+41} for every column j, with 1 <j < n.

Mool -
If Ais TU it suffices to solve the LP relaxation.

Proposition: min{c’x : Ax = b,x € R} has an optimal integer solution for any

integer lg(fo[qvi/hie@ {i%acirpil:g a finite optimal solution)[i@gglfonlyT[A is TU.

Given A and a basis B with det(B) # %1, there always exists a LP

min{c’x : Ax = b, x € R} } with a fractional optimal solution.
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3.3.2 Some ideal natural formulations

1) Assignment problem

Given n jobs and n machines with costs ¢; for all i,j € {1,..., n}, decide which job to
assign to which machine so as to minimize the total cost to complete all the jobs.

ILP formulation: min - 37 57 cixg £y eecln
=L =1 P e R S s
Z" X = 1 v o) waa_,*wm.—&x (2)
i=1 %X = J coappy & i)
Spax=1 Vi / 3)
. ) . . gy’wm;)fﬂm o F
Xij Ey {Ov 1} Vi, Vj (%ﬁ’fﬁp ptrassy

where x; = 1 if job /i is assigned to machirf1e j,1<ij<n

2 el m&ax_é’*’-’w "'e"u.v“ o)
. S S22 o S G
N.B.: In LP relaxation, x; > 0 Vi,j suffice = $Z. 5720 0785 cocnmorn®=
3= € xwy To e =L

A5 q-) m

Property: Constraints matrix (2)-(3) is TU. [/

. 2 xi) we —Cavne Es oAt
Proof: ‘_6»«.1»;,7_) Pl B S g OB

— aare ‘S S(3)
— €Ra et RatiVEs LR Lo e

Consequence: All vertices of the LP relaxation are integral, and formulation is ideal.
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2) Transportation problem

/r_e/o,\,-t—,, [& SN2
Single type of product. [ o= e ©
Gi o5 .
ven 4 o
-y o

@ m production plants (1 < i < m)

@ nclients (1 <j < n)

@ cj = unit transportation cost from plant i to client j

@ p; = maximum amount that can be produced (capacity) at plant 7

@ d; = demand of client j

@ g; = maximum amount that can be transported from plant i to client j
determine a transportation plan so as to minimize total transportation costs while

satisfying all client demands and plant capacities.

Assumption: 37, pi > 37, dj
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Natural ILP formulation:

Variables: xjj = amount of product transported from plant i to client j, with 1 <7 < m,

1<j<n
min Z:’;l Z}'le C;IjXU
ik K Vi s @
caole, ( Llixj2d Vo e )
(=) o (2) we L= Xi ‘ﬁ—qu VI,VJ —y omrer (6)

xj > 0 integer  Vi,Vj

Property: Constraints matrix (4)-(6) is TU.

. 0. T abtox Loton T CoONE,
Proof: 3?3:—’:3 o e G o T
ot wlvce 2N N TU

Lo ~roRe wonte W
st -/J:_;& Loty of At cla

Consequence: If all p;, d; and gj; are integer, every vertex is integral, and hence the
formulation is ideal.
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3) Minimum cost flow problem

Given directed G = (V/, A) with a capacity u; and a unit cost ¢; for each (i,j) € A, and
a "demand" b; for each i € V (b; < 0 for sources, b; > 0 for destinations, .., bi = 0),
determine a feasible flow of minimum total cost satisfying all b;.

b2z
Natutal ILP formulation: bv—-g< ot JR A
4
min >(ijyea CiXi bsme
2o hiyes— () Xhi ~ D esty Xi = b Vi€V (7)
xj < uj W(i.j) € A (8)
xj > 0 integer v(i,j) e A

Property: Constraints matrix (7)-(8) is TU.
Proof:
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Consequence: If all b; and capacities uj; are integer, every extreme point is
integral, and the formulation is ideal.

Exercise:

Verify that the following problems are special cases of Min cost flow problem.

- Shortest path: Given directed G = (V/, A) with cost ¢;; for each (i, j) € A, and two
prescribed nodes s and t, determine a minimum cost path from s to t.

- Maximum flow: Given directed G = (V, A) with a capacity u; for each (i,j) € A, a
s and a sink t, determine a feasible flow of maximum value from s to t.
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Ad hoc more efficient algorithms

For the three above problems, the formulations are ideal but there exist better
olynomial-time algorithms which exploit the problem’s structure.

Rounding optimal solutions of LP relaxation

In general, when constraint matrix of ILP is not TU, x] is fractional.

Rounding x;, does rarely work because
@ rounded solutions are often infeasible for ILP,

@ the error with respect to w.r.t. an optimal ILP solution may be arbitrarily large.

In general, rounding xj, yields a good approximation of xj, only when the components
of xJp have large values.
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3.4 Relaxations, heuristics and bounds

Generic Discrete Optimization problem

ﬁ-}:\“l—
* . ZT'ML
z" =min{c(x) : x € X} Sl
| we Ton w-ea
; on x* TeY ) Sk egl
and an optimal solution x* € X. e e S
—Cule ERe @oreriie O~ e
Mportie Coras oRe-s T—enz_

Algorithms generate: a decreasing sequence of upper bounds u; > ... > ux > z* and

an increasing sequence of lower bounds | < ... < [y < z*.

Termination criterion: &Jk —I) < ¢glfore > 0.
) = or % 2w f R

[Primal bounds| (min)
Any X € X yields an upper bound 7 = ¢(Xx) > z*.

Even finding an Xg‘i( may be challenging (NP-hard).

e T wlu R I

Dual bounds](min) o (e o g Tl T R i
ua” 2o e b PRI SN
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Quality guarantee:

If x, is best feasible solution found so far and /x best dual bound,
(clxi) —h) <e

guarantees (c(x,) — z%) <e.

For maximization problems, primal (dual) bounds are lower (upper) bounds.

A

- Dl oo we com

%T; %@Q oot we — o~

Tre needl to

— €Eov L= =T 2 = s ) R

twel v

Covcemt =5
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Definition: Given

(P) z" =min{c(x) : x€ X CR"},
a problem 3/ léN
(RP) Z=min{&(x) : x€ X CR"}
is a relaxation of (P) if
e XC X— ,,.E%;»L_€§§§?=4as»~“cvx
@ &(x) < c(x) for each x € X.——_ o« we_con SO T2ENE NS

o) e

Proposition: If (RP) is a relaxation of (P thengjﬂ

Proof:
Rt kT Lo o orhunRl Rt o P
Lo —~ ~
_xwveXeX = xveX =) ¥ = =¥
— Z(x®> = clx®)= 27
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Proposition:

lllustrations:

Let x}p be an optimal solution of (RP). If xjp is feasible for (P)

(xpp € X)@E(gﬁp) = c(xgp), then xgp is also optimal for (P).

xZp o 2o o) AR
o [ SRVIPES
< -

2 we e
) W e W
el Mwm/s@ oo AU

Aim at tradeoff between the bound quality (z* — Z) and the computational load of (RP).
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3.4.1 Different types of relaxations

1) Linear programming relaxation
For any (M)ILP

ziLp = min cix+ciy
Aix+ Ay > b
x>0,y >0, integer

and its LP relaxation

zip = min cix+ciy
Aix+ Ay > b
x>0,y>0

we have z,p < z;p. The/strongerithe formulation, the(tighterjthe dual bound z;p.
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2) Relaxation by elimination
Simply delete one or more constraints.

Examples:

1) Asymmetric TSP

Delete the subtour elimination (cut-set) constraints.

2) Multi-dimensional binary knapsack problem

max > i1 PiXj
st Yywpg < Wi Vie{l,2,...,m} (1)
Ge{01}  Ye{L2...n @)

Delete all but one constraint.

Very weak relaxations.
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Moo : Seeeacte o ate
. Qo ~ Ao QX tump, Lo
3) Surrogate relaxation (SR) — ° el PSS

st com @ YA Olen
o e lt s & —0 0 o Ao

Idea: Replace a subset of constraints with the surrogate constraint, i.e., their linear
combination with multipliers A; > 0.

Example: Multiple binary knapsack

Given m knapsacks of capacities W;, select m disjoint subsets of items fitting in the

knapsacks so as to maximize total profit.

Lo eoas TS

~ wobewnn ) oo U

Zmkp = max 31 37T piXi
st D wx S W Vie{l,2,..., m}j\
Yrog<l o Vjefl2..,n} |

xj€{0,1} ViV
Surrogate relaxation of (3): e
2(2) = oew ZF TS G ent o
~t vaz( S ws x»‘J> = f/:’*/wﬂ < Compmrenein
= 5
(
PP YIS Zoxas T4 VS

xu; € fo, %} ViV
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=N
e aVeoDees %, 2 o-cla
bR s Lot SALe~aNE T et
T eecondians TS TR AL

Zs(») = max > Z,L{l PiXij
st D0 2 (Niw)x < 50T AW 9)
ST X < 1 vie{l,2,....,n}  (10)
xj € {0,1} Vi, Vj (11)

Since for each item j a copy i with smallest \; is more convenient, it is a standard binary
knapsack problem with capacity >, A Wi.

e la s RNV NASAND Slos e vV‘—ﬂ—QAf
Lo o e tRa 0L b
AR Eaaddd

Clearly zmkp < Zs(y).

Look for smallest upper bound by solving surrogate dual:
oo &Ra
25()\ 7 v%e .,o:vﬁ‘e‘- [ YOV

S
Wewmw e =

>feen
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4) Lagrangian relaxation (LR)
Often LP relaxation and relaxation by elimination yield weak bounds (e.g., TSP, UFL).

Idea: [Eliminate[the "difficult” constraints and add, for each one of them, a term in the
objective function with a multiplier u which/penalizes|its violation.

For max: terms > 0 for all feasible solutions.
et
conntin e P
Example: Multiple binary knapsack /f'ﬁ;’fm S
[

Zmkp = max 3T 300 X bl

st Yl,wxg < W Vi€ {1,2,...,::1\}”‘*
(12)

Sl <1T. Yie{1,2,...,h)
x; €401 ViVj

Lagrangian relaxation of (12):
<y 2 et ‘i_g K‘;JB
Blews = N ZF N T o C,;,,,, — (13)
<TOo
At Z Wy K T s = :‘)\iﬁ%m wn mst (14)
5 s
) X&y € Jo 3 < L] - At aRRARINE
) > R T IR TSR (15)
D e

\_ we hasy~ ‘t:—w&,vto

oG
9/22
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Since R .
ZZPJXU+ZUJ(1 ZXU)_ZZ(pJ “j)xﬁ+zuj7
i=1 j=1 i=1 j=1 j=1
in Lagrangian subproblem (13)-(15) each item j has profit ; = p; — uj, weight w; and

can be inserted in several knapsacks.

Kv{rp"é-@do —Loyerrs wee et Lo~
@ NS AT AN

2 L. TAOT O Dy
’ A D) TLO
e fa~casl o J_\“—y%;%«)%& _seCsir~
- ~ 2 (16)
=T _Z 20—t g;w"_; wlane = OwRA 2T 3 (17)
D= = | ot Z-Jr:. wy x5 = wy
‘\‘ xye §o, i
|
Lagrangian dual:
min z;(,).
>0 L(u)

LR discussed in detail later.
Academic Year 2022-23
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Simple dominance relations among relaxations

Compare the quality of three relaxations in terms of dual bound (relaxing same
constraints with optimal multipliers).
AN = KLoe o

—~——

R | -
Proposition: SR and LR dominate the relaxation by elimination.

SPOLe, Latre~ (R Q) 25N AT _oAn) O JUMM.QQM‘L—
s Teloe

— D == wn =
— s S W L
Proposition: SR dominates LR. S = we comluas coushiv

S e (Tenses
bre ™ "8ied

e cornatial

R S~
oo oo S R Ls we cow tole

Sr. sexianasl R rsRaxdanT “ Q2R

By e ACoveA prsco S, Lt

In practice LR is widely used because

@ Lagrangian subproblem is easier to solve than surrogate one,

@ 7 efficient methods to determine "good” Lagrangian multipliers, unlike for SR.
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5) Combinatorial relaxations: Symmetric TSP

Definition: Given undirected G = (V, E) with V = {1,...,n}, a 1-tree is a subgraph

containing two edges incident to node 1, and the edges of a spanning tree on {2, ..., n}.
Illustration:

oo Ko caet ;| O tRa
o S R T
oSt datess corv

Exact algorithm for minimum cost 1-tree:

— e Kotienwdane TR Mcost ST Ov R oule s, o “ea
e~8e. 52, ..., W) ~da R lruslhsl S (o,,u-um,vc)% See)

— ue e ect tus Idess vrcoStar T wwa TR Ao S
oo L el R manol% ot Ceot

Recall Kruskal's greedy algorithm:

Consider edges in the order of non-decreasing cost.

At each step, discard edge if it creates a cycle with previously selected edges.

) . Lo —eLone
Stop when selected edges "cover” all the nodes. — == W22 228 070000

Al Colacteal 2Fco-
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3.4.2 Heuristics for primal bounds

1) Greedy methods

Construct a feasible solution piece by piece.

At each step, select an available " piece” that yields the best "local profit”, without reconsiderin

revious choices.

Example 1: Binary Knapsack Problem

Z| p = max
s.t.

Order items by non-increasing profit-weight ratios (p;/w;) :

16x1 + 22x0 + 12x3 + 8xa

5x1 4+ 7xo +4x3 +3x4 < 14

X1,...,X4€{0,1}

X1 X0 | x3 X4

5 6| 212 8

w; 5] 7] 4] 3

weaiest [p/w |32 ] 314 [ 3 [ 27
’\4) <G S H2

=

CSt) onar R,
2 cor o ©

o tilka.

Consider items in that order, select (x; = 1) th’ose not violating the residual capacity, skip the

ot <7 as |
K—k‘[‘é‘t—) 2=3% {5::(§>“;v=47, )

others (x; = 0).

Edoardo Amaldi (PoliMI)
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Feasible solution of greedy procedure: X = (1,1,0,0) with Zgreeq, = 38.

Optimal integer solution: x* = (0,1,1,1) with zp = 42.

Clearly Zgreedy < ZILP-

How bad can a greedy solution be w.r.t. an optimal one?

Worst case example:
cobmn L P We=E et 2 S e = = 4 onnt
otiern 2 U\)z=W/ ‘f”i':W w

= )__s@-ﬂ.ﬂ.kl)t‘[g_B 2 sand>= = /
s P) ev=W
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Example 2: Symmetric TSP with complete graph

Nearest neighbor heuristic: Start from any node, at each step insert the closest node
not yet visited, come back to the starting node.

Complexity: O(n2), where n = | V.

For animation see https://www.youtube.com/watch?v=fFfizorMPuk

Empirical performance: on TSPLIB(rary) instances it yields tours whose average cost is
about 1.26 times that of optimal tours.— " — e cor oot

oo

Worst-case performance: there are instances for which the found tours are arbitrarily
worse than the optimal ones.
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2) Local search methods

Generic

min c(x)

and try to iteratively improve a current feasible solution.

Define, for any feasible solution x, a neighborhood N(x), i.e., a subset of " nearby”
feasible solutions.

.}ewwi

e~
e e’e,.g.;_,al. SR —~ - 1
Start from an initial gof e g Ml

Ty . ot el O
At iteration k: (/g ;>y* T S e AT
- find a best solution x" in N(x,) %:;///N“—"’ ) Pt W)

- if ¢(x") < e(x,) then x, ., := x" and perform iteration k + 1,

otherwise return x, which is a local minimum w.r.t. N(x).
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< t 2 Evna /
o5 We vme puclowe tus 2dess © o PP Al vk

Example: 2-opt heuristic for Symmetric TSP

Given G = (V,E) and a current tour H C E.

For any nonadjacent e; and e in H, try to replace them with the two (unique)
alternative edges recombining the two paths into a new tour H'.

lllustration:

ot~o
- pRect fToose Toew
POl el
~eou crele !

XYV IR i
~— o)) o t oo )
cQa we tluvv
Lo Q) e o> & A

N(H) = { tours obtainable from H with such a ”2-interchange” }. . < © o<

If c(H') < c(H) then set H = H’, otherwise H is a local minimum w.r.t 2-opt
neighborhood.

For animation see: https://www.youtube.com/watch?v=UGGPZnAUjPU
http://www.youtube.com/watch?v=SC5CX8drAtU

Complexity: O(n?) with n = |V/|.
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Also k-opt for k = 3, with complexity O(n3).

Empirical performance: on TSPLIB instances 2-opt (3-opt) provides tours about
1.06 (1.04) times the optimum.
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(% i T
Metaheuristics (for minimization problems)

To try tolescape from local optimaland improve upon local search heuristics.

E.g., tabu search, simulated annealing or genetic algorithms. 4

Tabu Searchy/ | i

2

Idea: Allow moves to the best neighbor even if it has a worse objective function value.

Use a tabu list to avoid cycling.— .
. SOl e conan i vnve, DAL
Xé;:w—wu%»u- Coat e ok~aad) cowdaad
— —~Cx e et weucan ol masla
o~ we ‘egA/w,_d trfbt ‘s -—;w«o\./:z:/) .,e/p'ak
Start from feasible x,. /= meRe. t20nn sRev e, 922 7ot ey volvas

—Fes

(
At iteration k, x,; := x’ where x’ is the best solution in N(x,), even if c(x') > c(x,).

&
Prevent to undo recent moves for a certain number of iterations.
Once a move is peformed the ite move is made tabu for the / successive iterations.

Best solution found is stored and returned after a prescribed maximum number of
iterations.
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Example: Uncapacitated Facility Location (UFL) problem

rieke.
m clients (i € M) and n depots (j € N) S oeEs el Ser T

coursXon tCa_
For any S C N)feasible solution where the depots with indices in S are open and all

clients are served by the "cheapest” open depot. f\,w;,o, con SLo, €20~ _:—.,
. . . . C/S—’./e-wt) ettt vy
Corresponding objective function value:

Wl o g(?/\).,/;M?’QQ—/ AN © 2L Ok
Comti~actfiaionn |

oo S et S e covlal i e
oo o fepsst =) S S\, L€
Zadd o Fonsle =D D SLIE3 L SES

= W= TSV TSV SES e §
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m = 6 clients, n = 4 depots

So
L
6 2 3
1 9 4
15 2 6
(Cff) = 9 11 4
7 23 2
. 4 3 1
( E;;‘?f’,l' . 1/:; o
CEoEST

f =(21,16,11,24)"

Initial solution: So = {1,2} of cost ¢(So) = 61.

Three iterations of Local search (Tabu Search):...

ey 7=, 722,
T=%23%,T=224
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3.5 Branch and Bound — Review

Generic Discrete Optimization problem:

(P) z=max{c(x) : x € X}.

Branch and Bound is a general semi-enumerative approach (Land and Doig 1960) to
explore the feasible region X.

See chapter 7 of L. Wolsey, Integer Programming, Wiley 1998, p. 91-111.
Two main components:

@ "divide and conquer” strategy (branching)

@ implicit enumeration exploiting bounds (bounding).

By exploiting bounds e antioruone K oS
e

- it avoids explicitly exploring certain subregions of X -zl €Ra, < )

—Ro WIS ALAD <

2 o At ODmnmtlco. W
—'&Mt_eg: v Cle R Mese) S
VO Cula onCtears SRE A O
£Ra Lo

- it is guaranteed to find an optimal solution.
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1) " Divide and conquer” strategy

Idea: Recursively partition X so as to reduce the solution of (P) to the solution of a
sequence of smaller/easier subproblems.

Observation: Let X = X; U...U Xx be a partition of X in k subsets (Xi N X; = () for
each pair of indices i # j) and

7 = max{c(x) : x € Xi}

for 1 < i < k. Obviously z = maxi<j<« z
Partition of X or X; = branching operation.

Procedure represented by a enumeration tree with root node associated to X and other
nodes to the subsets X;.

Examples:
- X C{0,1}* - binary branching

- X set of all Hamiltonian circuits of a given digraph G = (V,A) — multiway branching
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2) Implicit enumeration

Explicit enumeration is too heavy computationally, recursive partition of the feasible
region does not suffice.

Idea: Exploit upper and lower bounds (primal and dual bounds) on Z' with 1 <<k,
in order to avoid explicit exploration of some subregions X.

Observation: Let X = X; U...U X, be a partition of X and
7z = max{c(x) : x € X;}

for 1 <i<k.

Moreover, let /' be a lower bound and u’ an upper bound on z', namely /' < z/ < u'.

Then | = maxi<i<k I is a lower bound and u = maxi<;<k ' is an upper bound on z,
thatis I <z < u.
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Pruning criteria

Cases in which primal and dual bounds for i-th subproblem can be used to avoid
exploring (discard) X; (to prune the corresponding node of the B&B tree):

@ Optimality criterion: If u; = /;, no need to further explore X; since we found an
optimal solution in X; of value z' = u; = I;.
@ Bounding criterion: If the upper bound u; is lower than

- the objective function value LB of the best solution x,z found so far
or
- any lower bound /; for j # i,

no need to explore X; because it cannot contain any better feasible solution.

@ Feasibility criterion: X; = ()

Four examples of subproblems (node) configurations, including one whose feasible region must
be further explored.

If a subproblem is not "solved”, recursively generate subproblems (branching step).
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Main ingredients of Branch and Bound method (max problems)
e Upper bounds: Efficient method to determine a good quality dual bound v on z.

e Lower bounds: Efficient heuristic to look for a feasible solution X with a value ¢(%),
which provides a good lower bound ¢(X) on z.

e Branching rule: Procedure to (recursively) partition the feasible region X into smaller
subregions.

To be stored and updated:

- list £ of active subproblems with lower and upper bounds on z': I' < z/ < u,

- global upper bound UB on z,

- global lower bound LB on z provided by the best feasible solution x,; found so far.
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General method, we "just” need to specify:

@ how to choose the next subproblem (active node) to be " processed”
@ how to generate the subproblems of a given subproblem (the " children” nodes)

© how to efficiently compute the primal and dual bounds.

The performance of a Branch-and-Bound algorithm strongly depends on the efficiency of
the branching rule and the quality of primal and dual bounds.

A Branch-and-Bound approach is applicable to MILPs and to Nonlinear Optimization
problems.
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3.5.1 Branch and Bound for ILP problems

Find an optimal solution xj; » of

zip = max{c'x : Ax = b,x > 0 integer}. (1)

Solve its linear relaxation and let x], be an optimal solution of value z.p.
H PN S At U*
Obviously zyp = c'xj;p < zip = c'X]p.

If x]p is integral, it is also optimal for (1). Otherwise xj, is fractional.
Branching
If x]p is not integral, choose a fractional component x; and generate the two suproblems:
zip = max{c'x : Ax = b,xy < |xz],x > 0 integer}
Zip = max{c'x : Ax = b,xy > | x5 ] + 1,x > 0 integer}

with the corresponding subregions Xi and Xz of X, which are exhaustive and mutually
exclusive.

1 2
Clearly zyp = max{zjp, zjip }
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Recursive process: solve the linear relaxation of each subproblem and, if needed, carry
out a branching step.

Bounding
Consider the i-th subproblem with feasible subregion X;.
Solve its linear relaxation, let x}, be an optimal solution and z[p its value.

Clearly, if all ¢;s are integer, every feasible solution of the ILP in X; has value < |z/5].

In Branch and Bound, branching and bounding operations are alternated, while storing
and updating the best feasible solution found.

We need to decide:
@ criterion to select the next subproblem (node) to explore,

@ how to generate the "children” nodes for the node under consideration (choice of
the branching variable),

© heuristic to determine the lower bounds on the optimal objective function value.
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1. Choice of the subproblem (node) to be processed

@ Depth first search strategy (" deepest” node first): easy to implement but costly if
wrong choice.

@ Best bound first strategy (most " promising” node first): tend to generate less
nodes but the subproblems are less constrained (we rarely update the best solution
found so far).

2. Choice of the fractional variable for branching

@ Branching first on a fractional variable whose fractional part is closest to 0.5 (in an
attempt to generate two subproblems that are "equally” constrained) is often not
the best choice.

@ Strong branching (" estimate” the bound improvement if branching on several
candidate fractional variables, and branch w.r.t. the best one) is costly but effective
for some hard instances.
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Exponential example for Branch and Bound:

Let n be an odd positive integer and consider the ILP problem:

max —Xn

st x+2) 0 ,x5=n
0<x <1 Vje{0,1,2,...,n}
xi € 7" vj € {0,1,2,...,n}.

It can be verified that, when Branch and Bound is applied to this ILP instance, at least
n—1
272 |LP subproblems are inserted in the list L.
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Example 1:
Find an optimal solution of the ILP
max 4x1 — x2
st. 4x3+2x > 19
10x; — 4x2 <25
x <2
xi1,xp € Zt

with the Branch and Bound method by solving graphically the linear relaxation of the
subproblems. Branch first with respect to xi.

Example 2:
Solve the binary knapsack problem

max 10x; + 12xp + 5x3 + 7xa + 9x5
s.t. bxy +8xp 4+ 6x3 +2x4 + Tx5 < 14
X1,...,x5 € {0,1}

with the Branch and Bound method. Use a simple greedy heuristic to determine the optimal
solutions of the linear relaxations.
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3.6 Cutting plane methods

Generic ILP
min{c'x : xeX={xe€Z} : Ax<b}}

with rational A and b.

An ideal formulation always exists (Meyer's theorem). But for NP-hard problems, it is

unknown and/or it contains a huge number of constraints.

Idea: Improve initial formulation (approximation of conv(X)) by adding valid inequalities.

Definition: mls a valid inequality for X C R” if/x'x § o foriachgiei)&?

Illustration:

T NEN-RRS MWM,QJ&,J(:)

— £l N7 Sl B TR) oRR
2o —Atm SP
_— R~ AN
) _— = wtee s bas @EFI0C e meesxasl
— :_Az‘“t oo cvteo~
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Use of valid inequalities:
@ add them a priori
@ generate them as needed — via a cutting plane method.

1) Addition a priori

Advantage: Branch Bound method with stronger formulation is more efficient
(tighter dual bounds).

Example: Given weak UFL formulation with >~ x; < my; Vj € N, add stronger
xij < yj, Vie M,jeN.

Disadvantage: If huge number of valid inequalities, the LP relaxation is extremely

heavy and/or standard Branch and Bound is impossible.
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2) Cutting plane methods

Generic ILP:

min{cx : KG[XEJP,Q‘Z"”

where@: {x € R} : Ax < b} is the feasible region of LP relaxation.

A family F of inequalities 7*x < o valid for X E 7ro) € }7
Often |F| is very large (e.g. cut-set for ATSP).

Definition: Given|x” € PJwith/x" & X{, a cutting plane is an 7' Tix < < 7o s.t.
@ 7ix < mpis valid for X = PN Z" mfowmw\

07rx>7r Aol
0-\,“-@1./00@,%

HR. ovce we tela
Illustration: e p (R reRa- )
s DUt -2nJI v
o XX
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Idea of cutting plane methods:

No need for conv(X), iteratively add /cutting planes] providing a good description around
X p, i.€., bringing it out as optimal vertex of LP relaxation polyhedron.

Canttvave,
| R ray

Sy
Illustration: |

o cTx
=eX
PR —

-
ECreny

ot s lbos mme =
. tﬁrﬁ%%‘/‘;‘? Catiaeon NE
Separation problem: o tila ARl L1P et

¢ X|and [a family F] of valid inequalities for X, find one which separates x’

from conv(X) or establish that no such cutting plane exists.

IIIus'E*Qtion: e
A0l oA cCo ;
YR S ot
eo “tmn CMTONES SR o :,.f’_u, [ONPEN
o e So~rrINS Lo
{Zc.éai ot 2acly e W\g— cOa Dt
COELRARA RN M,O..QA—_\_’(

Example: Gomory fractional cutting planes for ILPs — see Foundations of O.R. and 3.6.3.
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Cutting plane method
e St
i
Initialization P’ := P = {x € R : Ax < b} = “SEe e~

@ Solve current LP relaxation min{c’x : x € P'} and let/x be an optimal solution.

Q E}z:eznk THEN terminate because xj is also optimal for ILP

EISEL Solve the separation problem for x;,, F and X = P'NZ"
IF n'x < mg is found THEN P := P N{xe€R" : n'x < m} and go

back to (1). o P! pet-en

€L AR comstiant

ELSE stop
\ e ELot CarnR) G wSs n

Observation: If x]5 is not integer, P’ is anyway stronger than P.

wanle PlCcP, we
;A:;‘vsﬂz m/e_fo«vv-‘ig,lo
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3.6.1 Simple valid inequalities
1) Binary set

X ={x€{0,1}° :3x — 4%+ 2x3 — 3xa + x5 < —2}

>z o L o Ner{, 5 w&&%‘(—&/
o L) WS e N —en b !
9 A = We/
:/V\?\:‘.Cti =2 eI RBS = ore =R
Do SR ST = ot 2255 C %o B E %DLML
Q. ~ATwS o ~N— 2D
Lo o207 <
My S X2 j.n:,we,:amx?_—fxq?“’-
2) Mixed 0-1 set

X={(x,y) : x<cy,0<x<b,ye{0,1}} withc> b
Illustration: ¢ =5 and b =2

x < by is valid and, with x > 0 and y < 1, describe conv(X).
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3) Combinatorial set

Maximum Matching problem: Given undirected G = (V/, E) with profit p. € R for each

e ={i,j} € E, determine a matching, i.e., a subset of edges without common nodes, of
maximum total profit.

> _ 3 Soos St aea
c et R IR A

7

lllustration:

- %
e lect ot AnRIT - o /
“%%éx/‘%vw-c L’ Seop T \

—
X ={xe{0,1}/f : 2 ecs(iyXe < 1, i € V} all incidence vectors of matchings in G

— aren) cureelbu
— SRut 2= o s anivs

5 s e mene Ve

For any S C V with |S| odd and |S| > 3,

TS S S| —1
/Lj /7 ({ hl’/") Z Xe < 2

ecE(S)

A o

is valid for X. N €= (P): S5 S
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3.6.2 Chvatal cutting planes for ILP

Generate valid inequalities via linear combination and rounding. = Rile xze3
st et
ImnElacan~

Integer rounding principle: Given X = {x € Z : x < b} where b em, then

Eglbj{ is valid for X.

Example 1:
¢ > (c4) rc2)
X={(x1,x) €Z7 : —x1+2x0 <4, —x1—2x2< -3, 1<x <3}
a 3 “{’;’“_‘
3
2 X

A
By adding —x < -1 and —xj + 2x» < 4 multiplied by 1/2, we have: —x; + x» < 3/2.

Then

- s Ao Redl onrcal
e sltconesl Wt e
e

(%)
—x1+x < [3/2] =1 o

. . . P VYR | Lus o
is valid for X and needed to describe conv(X). W2 o, TN e s SaeRell

nne TR
FLonadonne _dosnn G, oo
Corns: L Pt demionn EURR w o
'L’e::c\../u-»e,&, o vAtlaco ant
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Chvatal-Gomory (CG) procedure:

Consider X = PNZ" with P={x e R} : Ax < b}
X={x€Z} : }7, Aix; < b} where A; is j-th column of A

£ 820 amnt_Rror ~recton
Cle Fi2.tI2 Rego~o Y
¢ £ Oa cliota P & D

1) Choose@é)@]and consider, Z;";f@%)?@ BT epth e
- esoun (et

W
2) Since |ufA;] < u'A; and x; > 0,
n ot ) [uw’t
D LAl <u'b
N o s e
is valid for P and for conv(X) and X. e

3) Since x; € Z1, the stronger
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Example 2:  Matching polytope

Given an undirected G = (V,E) and X = {x € {0,1}/E : DecsiyXe <1, i€ V3

Proposition 1: For any S C V with |S| odd and |S| > 3,

Sl -1 -
Xe < ——— A\ e et

Z ‘=2 o EER<T ey s
ecE(S) Con Re $oon~~ed g PP

S o<l viev ) SiEErmeEusi
ecs(i)
xe >0 Vec€eE.
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Proof:
Consider any S C V with |S| > 3.

Linear combination of (1) with u; = 0.5 for i € S and u; =0 for i ¢ S, yields

22—x6+7 Z Xe_|7

ecE(S ecd(S
which is valid for X.
Since xe > 0 and x € Z for each e € E, also
S
> x<lB)
ecE(S)

is valid for X.

If |S| is even, (3) is implied by (1) for i € S and by (2).

IF S| is odd, [ 121 = 2L=2 and (3) is not implied.

Edoardo Amaldi (PoliMI) Optimization
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Theorem 1 (Chvétal): |Anylvalid inequality for/anylX can be obtained by applying

o st o Chvatal-Gomory procedure a finite number of times.
e oat el
Tt

Proof for case X C {0,1}" cf. L. Wolsey, Integer Programming, Wiley 2021, p. 145-146
MmzZo g4>~—“l’ /\iﬁa M%Mﬁmﬁwwm

Lo we
= e et Axe = be oAl
> o ot T ER e

Given any fractional extreme point x}p of PEgizgsggh that the CG inequality
|u*A]x < |u'b] s valid for X and violated by x}p. Y
e T a CG ote oo o

P
P I e Pt

Ll Gt
St
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Definition: Denote by A'x < bt all inequalities obtainable by varying u in RT.
P ={x € R} : Ax < b,Alx < b'} is the first Chvatal closure of P.

Obviously P; C P, and P; = P if and only if P has no fractional vertices, that is
P = conv(X).

If Py # conv(X), we can iterate to obtain Chvatal closures Py of (higher) rank k, with
k> 2.

Definition: The smallest integer k such that@iziconz(i)z is the Chvatal rank of
conv(X) with respect to the formulation P.

o e —Co
*3:\:;(&(")"‘6: c{' ::AAWL ts
Clearly Py = conv(X)C ...C P,C PLCP. e;tmé—&’?&~

UQN-
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3.6.3 Gomory fractional /integer cutting planes — Review

. oot
Generic ILP o

min{c'x : Ax = b, x >0, x € Z"}

where A € Z™" b e Z™ and n > m.

Assumption: rank(A)=m

Idea: At each iteration, generate C-G cuts exploiting the optimal basic feasible solution
xp of the current LP relaxation.

. VE-1-2\
A=(BiMNY  ==(u)
B is a basis of A associated with xjp. IS4 .

3
Ax = b, x > 0 can be expressed in canonical form as =~ o= & 0%
=
xg=B"'b— B 'Nxy with x; >0 and x, >0,
el wt A
which emphasizes x;p = (xg,xy) = (B7'b,0).
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Egz = B~ 'b integer], x}p is also optimal for ILP.

LXLP is fractional / generate a C-G cut violated by xjp.

L?mw«f;\f«—v“ 2

Let x; be a fractional basic variable and row t of the canonical form

Xp + thij = b, (= X;) (4)

JEN

where N corresponds to non basic variables.

Observation: Equation (4) amounts to take u® = e!B~" where e, is the t-th
m-dimensional unit vector.

Applying CG rounding to (4):

. Cwctronsl i
the integer form of the Gomory'cut generated from row t of LP re tio

S SLbﬂ (5)

jen

Valid for X but violated by xjp.

Edoardo Amaldi (PoliMI)
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Substracting (5) from (4):

the fractional form of the Gomory cut generated from row t of LP relaxation

> (35— [3y])x = be — [be]. (6)

JEN

If {a} := a — |a] > 0 denotes the fractional part of a € R, (6) is equivalent to

> {3} x5 = {b:}.

JEN

Recall: {4/3} =1/3 but {~4/3} = —4/3 - (-2) =2/3

The fractional and integer forms of a Gomory cut are equivalent.

Observation: The difference (slack) between the lhs and rhs of (5) and hence of (6) is
always integer when x is integer.

Minimal computational requirements.
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Example:
max X1+ xo
st. x1+x<5
—2x1+x <0
5x1 +2x; < 18
xi,x € Z"

1. Graphical solution of LP relaxation:

A

0 1 2 3\: *s\sx
En =13

Two optimal basic solutions: x’ = (5/3,10/3) and x” = (8/3,7/3) of value 5.
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2. LP relaxation in standard form:

max X1 + x2

st. x1+x2+x3=5
—2x1+x2+x2=0
5x1 + 2x2 + x5 = 18
X1,...,X520

3. Canonical form w.r.t. the optimal basic solution x” = (8/3,7/3,0,3,0):

2 1

X1 —3X3 + 3X5 =
5 1

X2 + 3X3 — 3X5 =

—-3x3+xs+x5 =3

WIN Wl

Gomory cut derived from x; row:

- integer form: x; — x3 < 2

- fractional form: %X3 + %xs > %
Gomory cut derived from x» row:

- integer form: x; + x3 — x5 < 2
- fractional form: %x_o, + %xs > %
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4. Express Gomory cut associated with x; as a function of x; and x».
Substituting x3 =5 — x1 — x2 in x1 — x3 < 2, we obtain the cut: 2x1 +x < 7.

5. Add this Gomory cut to LP relaxation and find an optimal solution.

il N

Adding 2x1 + x» < 7 to the original formulation, we obtain an optimal solution of
new LP relaxation xjp = (2,3) with z/55.

Since x}p is integer, it is also optimal for ILP.

Edoardo Amaldi (PoliMI) Optimization
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rann@2) | Eormon) Cantn mmasas

o & CRAMToNA

Theorem 2 (Gomory): A Iegc‘ograghlc cutting plane method based on Gomory

fractional /integer cuts terminates after a finite number of iterations.

Provided a careful choice of (i) the basis defining the optimal solution we intend to cut
off and (ii) the row of the tableau used to generate the cut.

In practice: Huge number of iterations and such cuts tend to become weaker after a
few iterations.

Strategy: Introduce several cuts at each iterations, e.g., all those with {b;} > & = 0.01

Recall: Gomory fractional/integer cuts are generated via simple integer rounding.

cats O~ RO) €s
‘6/\/\‘6 Lo = m‘ff o —SLRa o~ .
‘e/"b't‘fl?/v A il ik amakd kiﬁ
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3.6.4 Mixed integer rounding inequalities

Consider X = {(x, y)* emx RY: x —y < b} where b€ Q\ Z.

Caod. < wt‘./rvv\m one

Proposition 2: The mixed-integer roundin MIR) inequalit

F =g @
is valid for conv(X).

For b € R, {b} := b — |b] > 0 denotes the fractional part of b.

a5 -2 = s
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Observation: conv({(x,y)" € ZxR" : x —y < b}) is defined by x —y < b, y > 0
and x — =5y < |b).
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3.6.5 Gomory mixed integer cutting planes

Generic/MILP

e min  cix+cly
o ol ILP -
s sit. Aix+Ay=b (8)
x>0,y>0 ©)
X integer. (10)

(x{p: ¥, p) an optimal basic feasible solution of LP relaxation.

Denote by Ny/N, the indices in N corresponding to integer/continuous variables.

@’L‘R@Liptﬁege‘r ((x{p,y;p) not optimal), 3 an index h € B such that x; & Z.
Canonical form w.r.t. optimal basis contains a row, say t-th one:
Xp + Z agxj + Z agy; = b, (11)

JjeN JeN ‘
: 5 h H h \p 2.
for appropriate a; and b, with by & Z. 3 s—,re)ume e LIS
&—Qv@ ":J’Q_ >, w,rvmt‘”)
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Notation: For any a € R, a© = max{a,0} and a~ = max{—a, 0}. SBLT an Gy
se—~+ 5 &gl = Lbel
o . OPT UusLrers, ot &R JEN
o %ﬁwcw PR Ny, ot omotad T et
e Q R > By £ [oo—0Re) SNOTH
Proposition 3: The Gomory mixed integer (GMI) inequality ¥ <~
e UFs— {R})*) 2L (@)
Xp + 3] + ————=———)x < |b:] + —y; (12)
,-EZM( ST Ty ) EZN 1= (b}
is valid for the feasible region (8)-(10) an_dﬁﬁ_o\la_t%&):\
\ ol Oou
\ Ny °g = P

Remarks: For pure ILP /‘

<
i) GMI cut (12) is potentially stronger than corresponding fractional Gomory cut

21 (Bt
(7({%1}_{23}) >0andy; =0Vj € Ny),

i) coefficients are not integer anymore.

rUnIike for fractional Gomory cuts in pure ILP, no finite termination guarantee for GMI
e“Lcuts but very effective in practice (see later).
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3.7 Strong valid inequalities for structured ILP problems

Studying the problem structure, we can derive strong valid inequalities yielding better
approximations of conv(X) and tighter bounds.

Forany P={x € R} : Ax < b}

o ~ul

Definition: Given m'x < m and p'x < po both valid for P,@égﬂz dominates
@ < ol if 2 u> 0 such that[up < 7 and mo < wpo with (m,m0) # (ups, upto)-

o
e €Ra L~ OrR O
9% Saor O X : o Ro TSoen

“Re 2 Al e e 20
€ = =—6M1’WV:Q:-J B AAOANNS,

Example: x; + 3x2 < 4 dominates 2x; + 4x2> < 9
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Definition: A valid 7°x < 7o is redundant in the description of P if
3 k > 2 valid n'x < m} for P with u; >0, 1 < i < k, such that

L xSt
tiw 2 COMNO D9 QAN N

K K
) ) . .
( E uir')x < E uimy dominates 7'x < .
i=1 i=1

Example:

P = {(x1,x) eRi D ex1+ 20 <4, —x1 —2x < =3, —x1 +x <5/3, 1 < x; <3}

a Vs o e W/O'%b‘i_"q’z )

3 R eidtveata
2 T
~ LD tUove
ol A =28
1 e Mt P oo e Aoy

=22
d oA ¥

- = ottt s
—xaz =t e mazbe) D O ke =3

—xu+€2¥2=q (

Observation: It can be very difficult to check redundancy. In practice, try to avoid
dominated inequalities.

Edoardo Amaldi (PoliMI) Optimization Academic year 2023-24

2/23



3.7.1 Faces and facets of polyhedra

=3 poumnts
h-w= 2 vecrorno

Consider any P = {x € R" : Ax < b}. R | x~ [ wa%s
/ .‘\/l\ P [ ( X/v
x -/) xu./ -
Definitions — S
é’)?;?).m:ta ;7:6 R" are affinely independent if k — 1 vectors x, — xy,...,x, —x; (or k
vectors (x;,1),...,(x, 1) in R"') are linearly independent.
@ The dimension of P, dim(P), is e the maximum number of affinel

independent points of P/minus 1]

@ P is full dimensional if/dim P) nz i.e., no a'x < b is satisfied with equality by all
L’ W&b

points x € P.
% R
Illustrations: P
> r*
. (,o
P -

\/\\/’: \. (/ ~_ / oo M: el WM
- \ “’3 — / “.E'MU‘ w,e,aw Ax = &

— \ = [‘73 MW&’ 4
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Assumption: dim(P) =n

Theorem: If dim(P) = n, P admits a/unique minimal description!

P={xcR":ax<b,i=1,....,m}

where each inequality is unique(within a positive multiple

o o Y N . .
Each inequality is necessary (deletion yields a different polyhedron).

Moreover, each valid inequality for P which is not a positive multiple of one afx < b; is
redundant.

o
L B >
— “\ -
77\ J ece
T —
\ tememe TIZAY
F9= co AN
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1) Alternative characterization of necessary valid inequalities

= eao_ el #_ P uwoton
Definitions .., LB B

£.°

w—c)

@ Let F= {xeP 7TX—7T0}f0ran¥V3|Id7TX<7T0fOI’P Then F is a face of P
and w'x < mo represents or defines F

If Fis a face of P and @(EI;ET P‘EI)—, then F is a facet of P

lllustrations:

\
i

Con Elan S W
s |

ot~ P

Consequences: The faces of a polyhedron are polyhedra, a polyhedron has a finite
number of faces.

Theorem: If P is full dimensional, a valid inequality is necessary to describe P[if and
only if/it defines a facet of P, i.e., if 3 n affinely independent points of P satis it at
equality. (ge
m‘:ﬁ';&’“‘z‘guesuf
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Example:
Consider P C R? described by:

X1

—Xx1

—X1

+ 2x <4
— 2x0 < -3
3

< —

+ X2_2

Verify that P is full dimensional (dim(P)=2).

Which inequalities define facets of P or are redundant?

Edoardo Amaldi (PoliMI)
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2) Showing that a valid inequality is facet defining
Consider X C Z and a valid inequality 7*x < mo for X.

Assumption: conv(X) is bounded and dim(conv(X)) = n.

Simple approaches to show that 7ix < mo defines a facet of conv(X):

oy s S7T,
1) Apply the definition: Find n points x*,...,x" € X satisfying 7'x = 7o
and prove that they are affinely independent. R‘\

e LI
tf%’ PPNy )

2) Indirect approach:

(i) Select t points x,...,x" € X, with t > n, satisfying " x = mo.
Suppose t they all belong to a generic hyperplane Htg:po.

\
O
L sz S

.. . LL2us e D05
(i) Solve r system o SCRAR) L
n
wlo YN k
tﬂ%@‘%mf;?‘ E iXj = o fork=1,...,t
=1

in n+ 1 unknowns po, f1, - .., tn.

e ey e is@m’\@@w“h A # 0, then 7° x < mo defines a facet
of conv(X). P T A T
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Example:

Consider X = {(x,y) e R™" x {0,1} : > ", xi < my, 0 < x < 1Vi}

i) Verify that dim(conv(X)) = m+ 1.
— e pllo. WLIRE At vt € X
N Lo~ LT t-22) R SLPYRR) &
— kv con tela

. s bl L oA
(019 qud (Exl9d wobrls LT X Son OIS 2
(el 7.

Aelone tv o= (X))
(0. 0], 0~ 0)

Consilon ot Harmts weloe 2o
_ ow Qoo FEX)

L R S

= (o,0) owsl (&= t)

ii) Show (approach 2) that, for each i, valid x; < y defines a facet of conv(X).

e (2. 0) maory
€lot’ v on Lol TR

Mu,,cm_“m%’-—eqep/m_ Comrd” X ope e

ores of e Sorva (Su—+Su L) Pa'FEL

- .
crn. ERa condiSkofte (= omtu) 7RI
e Toesn ean B0 e

S lone E-@AT Coviieis C-Le -

e
<, . S eh, t2a Brranlt Ssgpasl ) ST x5t fman 7S P
i, Q2,0 v
= So+0=0%F Fo - . - /
g =0 = ‘= “ -
Drvca (Ewiw) Ef, e =D Hur T Pt * -~ T —
Olount B pmbs ((Su+ EX ) wR est
= o o =0 - =0 PalgL
D g et F o *

s wa eats H tS 2o

///”’\/ G K G F=c

€Ruy wnR —
;"}ﬁ{

-Ra LT P drnes E2ann
gt S Sl
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3.7.2 Cover inequalities for binary knapsack problem

Consider X = {x € {0,1}": 37

j=

13x; < b} withb>0and N={1,...,n}.
“Ra obomns ot

Assumptions: For each j, a; < b and a; > 0.

e cout St Wt (C)
—on tle Wc

Definition: A subset C C N is a cover for X if Zjec aj > b. %yu sl

A cover is minimal if, for each j € C, C\ {j} is not a cover.

Example: For X = {x € {0,1}" : 11x; 4 6x2 + 6x3 + 5x4 + 5x5 + 4x6 + x7 < 19}

20 AANANRR ConA o, CE=SH, 2.3
E ('_ -m;;ax:c;q]w,,q_w ;,W\,s%cwem

Proposition: If C C N is a cover for X, the cover inequality

jec &t Ranat ove fb‘ =)
. . gl - -
is valid for X. T A SIS
Example cont.: | .. cva s z-w=2 wn ¢
xs—(-xc,—ckq—cxc-ékbr. G-
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Federico Angelo Mor
"a" minimal cover, not the, there is not only one


Proposition: If C C N is a cover for X, the cover inequality

S <|cl-1

jec
@fm_wa@io_f@—conv(X)ﬂ{xeR":xJ—O,JeN\ ( and only if C is a
minimal cover. o Brsla Bon SAAIAARL ARE

oe) W C o weanmo o
ol et T —ea wotl. X;=0)
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1) Separation of cover inequalities

>
Ed

Separation problem: Given a fractional X with 0 <X; <1, 1 <j < n, find a cover
inequality violated by X(or establish that none exists)

Since > ;% < |C| — 1 can be written as 3, (1 — X;) > 1, it amounts to question:

3 C C N such that Zjecaj > b_and Z ec(l xj) < 1?

.,a::k) o (:-6\5-6 St
ALt //m oo
If z € {0,1}" incidence vector of C C N, it is equivalent to: S P
&

C=min{Sjen(l=%))2 Syen s > bz € {0,1}"H< 17
2a Sy staans
%M
Proposition:

() IECZ 1, X satisfies all cover inequalities.
(i) EE%@Wlth optimal solution z*, then 37, - x; < [C[ — 1 with
C={j:z =1,1<j< n} is violated by X by a quantity 1 — (.

Edoardo Amaldi (PoliMI) Optimization Academic year 2023-24 11/23



Example:
max 5x3 + 2x2 + x3 + 8xs

s.t. 4x1 +2x0+2x34+3x4 < 4
x; €{0,1} Vje{l,...,4}

Optimal solution of LP relaxation x}, = (1/4,0,0,1)" of value 9.25.

— e ol 2 L e lov atihses ) L cate TRARSTT T
s A e ) T e Lasvule €a- o CastTO e, 5L

— e —Lins~e to w~le TR ALyt T o Ao

rwa/wly = (e-K) 2 | o, 2 Ra—t 2223
Jjen a

ot Zu,‘%_}76 /J ot 4_1_‘_,2%21-2—%3—(3*:6,,2 “
Jen / o
S T B e e aeiptave g ae
Dottt OSSR

S/ £ LS

o
s R @sE 2T (0 o9) okl F= 26 ond s e e
Coner . xu o o =
Q,v-nyuvsg«:“-‘7
4 N %_;:%(C\_

Bl Ccuts e 2x(p

Separation problem is NP-hard, in practice fast heuristics.

Edoardo Amaldi (PoliMI) Optimization
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N now is just the set of objects (no reference to the "non basic" stuff of previous pages


2) Strengthening cover inequalities

Proposition: If C C N is a cover for X, the extended cover inequalit

XJ<|C|_ e re ICl,
7EE(C et f &

is valid for X, where E(C) = CU{J EN: 3 > aj forall i € C}.

=
c Mt—r W Dt C@a TTRan RN
"’V‘"_':‘" ,%Q':.,, > Feels Mr«o e S

Example cont.: X = {x € {0,1}7 : 11x3 + 6x2 + 6x3 + 5x4 + 5x5 + 4x5 + x7 < 19}

= ¢, 6,65
coven C E%/ ’ ‘
— oA Xz o~
< (RuN T 6 G ey = e
o =)
= E/C)_ CO{;% Z,JW,QQAtJ —
ot K24 K3+ Xxe+Xe < Xe = lel-t=3

Edoardo Amaldi (PoliMI) Optimization Academic year 2023-24

13/23



Systematic way to strengthen a cover inequality to obtain a facet defining one.
Example of [lifting proceduref
- =

X={xe{0,1}: 11>§1 + 6x5'+ 6x3 + 5xa + 5x5 + 4x6 £ x7 < 19}
Y~ 5 WL

Minimal cover C= {37455a6} with x3 + x4 + x5 + x5 < 3.
Consider x; with j € N'\ C in the order x1, x2 and x7.

The largest a1 such that ayxy + x3 + x4 + x5 + x5 < 3 is valid for X is

—wf k=0 =D V't’_';ﬁve ot Arex 8 ERRE _y%—ﬁtw
—cof Y=t e Wn\—..;.za.e:éfﬁfz A
S = B xa—Xe-Xs T X6 = ol

(LAY

ot Gxz+TXe+ Gxg—+CXe = Zo— ‘uz;

25— MK Xetke—+Xe— X6 (
X& € Fo,u3h

L= 3=z

\

Devo Shont Fo we “ewse & jX =32
Xp Xz + 2rat X3+ XGt+ke s =

o ~lid ‘Eon X

“+Xe
_ AR 2 xa—+ Xyt KGN
>z = 3 v %qu_égxz*gxn_,cx,-;oy;:_i;-@

Xie€ Soiv3e

QAL Cmall) Con X -

Edoardo Amaldi (PoliMI) Academic year 2023-24

14/23



Lifting procedure for cover inequalities

Let ji,...,Jj- be an ordering of N\ C and set t = 1.

Zf;ll ;X + > jccX < |C| —1 valid inequality obtained at iteration t — 1.

Iteration t: Determine the maximum o, such that
t—1

QX+ Y ayx + > x5 <[C[-1

i=1 jec

is valid for X by solving (binary knapsack) problem

O = max Zf:l Qi Xj; + ZjeCXJ

-1
st i X+ Zjec ajx; < b— aj,

x € {071}|C\+t71
and setting a: = |C| — 1 — 0.

Terminate when t = r.

Note: o+ = maximum amount of "space” used up by the variables of indices in CU {j1, ...

when x;, = 1.

Edoardo Amaldi (PoliMI) Optimization
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Proposition: If C C N is a minimal cover and a; < b for all j € N, the lifting procedure
is guaranteed to vield a facet defining i ality of conv(X).

Example cont.:

X ={x € {0,1}7 : 11x; + 6xp + 6x3 + 5x4 + 5x5 + 4x5 + x7 < 19}

the valid inequality
2x1 +x2+x3+ x4+ x5 + x5 < 3

defines a facet of conv(X).

The resulting facet defining inequality depends the order of variables N\ C, that is,
on the lifting sequence.

Edoardo Amaldi (PoliMI) Optimization Academic year 2023-24 16/23



3.7.3 Strong valid inequalities for TSP

STSP: Given undirected G = (V/, E) with n = |V/| nodes and a cost c. for every
e = {i,j} € E, determine a Hamiltonian cycle of minimal total cost.

min EseE CeXe o
s.t. Zeeé(i) Xe = 2 ieVv -
Deces) Xe SIS —1 SCV,S#10 (/X)LVM
xe € {0,1} ecE. et
L\_ w edeos

conv(X) with X = {x € {0,1}'E! of Hamiltonian cycles } is the STSP polytope
Proposition: For every S C V with 2 < |S| < n/2 and n > 4,
tea oo ten /“Z xe <|S5|—-1

Ry Y= ecE(S)

defines a facet of conv(X).

STSP polytope has a very complicated structure. Many classes of facet defining inequalities are
known but its complete description is unknown.

Edoardo Amaldi (PoliMI) Optimization Academic year 2023-24 17/23



Separation of cut-set inequalities for the ATSP

ILP formulation:

min Z(,,j)eA CijXij — )'o’) (6)
st Yipes =1 Y Wo\ > (7)
Lipesriy i =1 Vi o ®
PijestXi =1 VSCV:ile 57 (9)

x;j € {0,1} v(i,j) e A ( (10)

et AN

Co R cnt IR -crglied

we Twnas~e & 2 oA 2D
Cutting plane approach: S pns oot
Start solving LP relaxation of (6)-(10) without (9), namely
min Z(i,j)eA Cij Xij (11)
st Yijes—pXi =1 Vi (12)
Lipesr i =1 Vi (13)
xj= 0 v(i,J) € A, (14)
and iteratively add some/kwhich substantially \@IM@_@%
S v (G ST SE T ST
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Proposition:

Given xjp of the current LP relaxation ((11)-(14) with (9) generated so far), a_cut-set

inequality (9) violated by X]p can be obtained (if 3) by solving a sequence of instances of

the minimum cut proble

Separation algorithm:

w@fmf >
Ry PSR AT X

Given xjp, look for $* C V with 1 € §* such that Z(i:ji)eﬁ(s*) x,-j <1

Cowoder ¥ = CU, AP) st [FRSVONIC SISV
;T oo copett) TCw5)E AT
e\ sl we s

“Fon on) o of R ol Le ST G tesS¥,

Co o St f"(S“’)/%%MV""O
030 A A e et D
T femenle. a Lt et
cevt) ¥ o €Ron S o
9€ w::ﬂfe»-vt‘) e o a N R =%
- ok oo ot I AT ST

—eo Sl
e L\ 5«,7 a o 2-t Cat Ceons
s/z:,sn ‘Q/»c,e\c 5y y )_o2 ) oAl SNBEON ST >
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lllustration:

o T UAT)
I\ P P |
\

ARANW
<L esYy

P

[
t&S® par-owvet SRS
ates e
(> t) ez
ln e s Elon. COPROH % cut)
PN TRt ), sy eesw
r\AMNMMMA'
—) s we el CRn e ST ¥
& Wl - ety
Lo, o SR S et 020 €@ Lot ATE
e = - N O D =) M* :Mﬂé.a.»d
s KT - 7 Cnt et ) o
Ve ates®)
/’) — W o ST S = Wy ST e Al e
Observations:

@ The procedure

@ The separation problem can be solved in polynomial time.

ield a number of viol

wo adAd €t
oo o JoX
Edoardo Amaldi (PoliMI)

AN

t-set inequalities (one for each t).
T Re weqn

, o 8 £ 9%
o Al R ST TRka

Optimization



3.7.4 Equivalence between separation and optimization
oA Y s

A family of LPs min{c'x : x € P} with o € ‘O, where P, = {xeR™ : Ax>b,}
polytope with rational (integer) coefficients and a very large number of constraints.
Examples:

1) LP relaxation of ATSP with cut-set inequalities (O set of all graphs)

2) Maximum Matching problem: For each G = (V, E), the matching polytope

conv({x € {0, 1}l : 3~ x <1,vieV})

e€d(i)
coincides (Edmonds) with
xerRFl Y w<iviev, 3 x 2 L WS C V with S| > 3 odd}.
ecs(i) eCE(S)

Consider a cutting plane approach.

Assumption: The number of constraints m, of P, is exponential in n, but A, and b, are

specified in a concise way (as function of a polynomial number of parameters w.r.t. n).

o _Corea 2t con Lo
J:;::SZ,&QJ I—la—,M.nl/\/\‘f’M
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Optimization problem: Given rational polytope P C R" and ¢ € Q", find x* € P

\ minimizing c’x over x € P or establish that P is empty.

N.B.: P assumed to be bounded just to avoid unbounded problems.
MMN‘@

\
Separation problem: Given rational polytope P C R” and x’ € Q", establish

that x’ € P or determine a cut that separates x’ from P.

Theorem: (consequence of Grétschel, Lovész, Schriver 1988 theorem)

The separation problem (for a family of polyhedra) can be solved in polynomial time in n

and log U@ch only if/the optimization problem (for that family) can be solved in
polynomial time in n and log U, where U is an upper bound on all a; and b;.

Proof based on Ellipsoid method, first polynomial algorithm for LP.

Corollary: The LP relaxation of ILP formulation with cut-set inequalities for ATSP

can be solved in polynomial time in spite of its exponential size.
On e e Ele’t Tl s a~ofuae,

= A0 R s AR, o
‘—'.,,,&qu.,s,& Enve
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3.7.5 Remarks on cutting plane methods

Generic Discrete Optimization problem

min{c'x : x€ X CR}}

When designing a cutting plane method

@ Describing families of strong (possibly facet defining) valid inequalities for conv(X)
can be difficult.

@ The separation problem for a given family F may be computationally challenging (if

_ 1 1sti £ merenlen i e Dot neadl t
NP-hard devise heuristics). —eu A = g

/
@ Even when finite convergence is guaranteed (e.g., Gomory cuts), pure cutting plane

methods tend to be very slow. “\\ ot et 6 e eorad, s el
oLt

ot Tu GRSy 2040

Polyhedral Combinatorics is the subfield studying the polyhedral structure of ideal
formulations.
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ownd Loumsl
3.8 Branchand Cut

Idea: Embed strong valid inequalities into a Branch-and-Bound framework to be able to
olv rd /large problems to optimality.
M)(MW
T ><2 o~ _a_»féé\q'bao el X
— Branch-and-Cut method (L /.x; T L op Bt o DmEReas diteT

AR~ WON ‘E“—T
)
(Strong) valid inequalities are generated throughout the branching tree.

- . L, o, \—\Q‘Q,skw e~ ¥ oS
wdan s —Gurcling S PR SN Wl
+ Lo~ SUenaet—2) w&mczum\o/n-rbh'\'me & Kl

Advantages:

@ stronger relaxations of sub lems yield tighter dual bounds which improve
Branch and Bound efficiency,

@ slow convergence of pure cutting plane method,is contrasted by branching steps.

Trade-off between computational load of reoptimization and quality of the formulations
(bounds).
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Main components of Branch and Cut (min problem)

Preprocessing

Delete redundant constraints, strengthen the constraint coefficients and r.h.s. terms, fix
variables (whenever possible).

e o
Cegore P omMuve tRe BHL&C we Tua *@a,\uvot:&— T
Primal heuristics —~ Teaanteoe (4o St a @t wmbtean gyl —CrovnSl)

Tighter upper bounds lead to a more efficient implicit enumeration.

Cutting planes pool

Violated valid inequalities and facets are added by solving corresponding separation
problems exactly or heuristically. Many of them are simultaneously added at each node.

Branching strategy

Choice of the fractional branching variable based on one/mix of criteria (with largest
cost coefficient, " most promising” one based on estimate,...).

. _Cole = ocroosees-/ el et S Lo
Postprocessing —  oiast (F e ee xSt
When xp of value z;p is not integer, primal heuristic yields a feasible x,,,, such that

z1p < 2% < Zpeur (X, Often derived by "smart” rounding).
o CA A~
eucRastonve E5%5 N
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For flow chart of Branch and Cut, see L. Wolsey, Integer Programming, p. 158.
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) . (Do WotlL Cweroanca Comatin)
For an example of application to the generalized assignment problem
min z = ZIE,EJEJ CijXij
s.t. Yesxi=1 Viel
Eiel wixy < bj VjeJ
xj € {0,1} Viel,Vjed,

see computer lab 2 and L. Wolsey, Integer Programming, p. 157-160.

Computer lab 2: separate cover inequalities and evaluate the impact of adding them
at the root node of the branching tree (Cut and Branch).
e ot‘wé}@w em»Q‘A)/';&.QQ, wir%)
L S Cls €l Co~cla N oL Roru—s
Branch and Cut methods solve to optimality a wide range of discrete optimization
problems.

Example: Concorde algorithm for TSP (see http://www.math.uwaterloo.ca/tsp/)
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Impact of different features in a MILP solver

From R. Bixby, M. Fenelon, Z. Gu, E. Rothberg and R. Wunderling, Mixed integer programming:
A progress report, M. Grétschel ed., The sharpest cut, MPS/SIAM Series in Optimization (2004)
309-326.

2002 "new generation” Cplex solver for MILPs
Computational experiments on set of 106 benchmark instances

Different features

Feature Speedup factor
Cuts 54
Preprocessing 11
Variable fixing 3
Heuristics 1.5

Average speedup for each feature (enabling that feature versus disabling it, while keeping all
others active).
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Different types of cutting planes

Cut type Speedup factor
GMI 2.5
MIR 1.8
Knapsack cover 1.4
Flow cover 1.2
Implied bounds 1.2
Path 1.04
Clique 1.02
GUB cover 1.02

MIR cuts: heuristic aggregation of constraints with mixed integer rounding.
Lormany amoxadl

Omnba e canto

GMI and MIR cuts implementations account for finite precision (avoid invalid cuts or
cuts that could slow down LP solution).
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3.9 Column generation method

Many relevant decision-making problems can be formulated as ILP problems with a very
large (exponential) number of variables.

Examples: cutting stock, crew scheduling, vehicle routing, combinatorial auctions
multicommodity flows,...

General idea:

@ enumerate all partially feasible solutions and represent any additional constraints in
a set covering/packing/partitionning type of formulation.

@ do not consider all variables explicitly, new variables are generated when needed.

Cde e MOL Al P uwh—@v
O Sicgo PSP corroRaminnaE,
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Example: 1-D cutting stock problem

A paper company produces large rolls of width W.
Demand: b; small rolls of width w; (w; < W), iel={1,..., m}.

Small rolls obtained by cutting large rolls a ing to certain patterns.

Given
@ large rolls of width W,
@ demands for b; small rolls of width w;, with i € /
decide how to cut large rolls into small ones so as to minimize the number of large rolls

used, while satisfying demand.

. E‘i—
lllustration: o —
o ——
e W b
a——,

NP-hard problem
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Classical ILP formulation (Kantorovich)

K: index set of the large rolls

) Q0 Li-ten el el

Xetpo ﬁnee 4:)‘;««2,, -e_-.eAL:wL— é—[,\l—f-@v $
cant MQ,Q d

( e~ Mg)fﬂw%wet&/ _j‘éow’ —s e o >

Fam 5[ o b neRE et
o

Lo~
e =
w 2l = A beZb S
e e = b pmeT={wiof
wele
= - {W>

£ Ca fwﬂig ’f’“"A’u
e - o ELe Comatty
e e | viek (PSS

Very weak formulation \

Trivial LP relaxation bound:

W Xt = [ = )“‘*"“] =
b / = YY) - [ "W ick
=z LP k%« S / M ier Sex LET
_ W O
= —w
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Set covering ILP formulation (Gilmore and Gomory)

S We
T Rt~ -2p /‘-\’, we
> I . Mmeors Elrat W Cnt 2
Let J = {1,...,n} denote index set of the patterns, “QJ&; Dol W e
,J[t e number of small rol width w; in attern. _( ,J,L St ¥
-Le~a
— X + % Ao Eoe Lorso 22 _.M
o cemrse FeATRANAN o
netal 2% = Ao o
e Jje o
et / W/vvd, )
~t Z awy Xi Z b «~ ( Comotr -
jes en olont L W‘Z:Q?*)
L """"Q”uw/‘: tﬁ';\,m’“ o chine tT W/"‘"“)

R

e 2t v

Number n of variables (patterns) UWHUM@MWM(WP% of small

rolls). G B SR B ek o e

U;M ~ farr (T

i : G Lo tanlAoan~as
Observations: (%unin oBornts t:8a ot

@ at LP optimality at most m of the n variables have nonzero value; since m < n only a very
small subset of them (columns) is needed.

@ for large integer b;s, rounding optimal solutions of LP relaxation leads to satisfactory
integer solutions,
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e S0l crentl) o Lk
I BRN

Column generation scheme «~ Sazeas g, Smde

Idea: no need to include all variables a priori, new variables are generated when needed.

Cole. e JaRR Srnscly R CantrUAne
Pl wle~e I~ eoapl si‘fem
— e “Gad On Ry T P <O

Main steps: Cov A v ow TR PR) £0oRRe oty / LTI

1) consider LP relaxation of ILP, choose initial subset of variables Jy C J, and set
k=0,

?C;"UM ¥ :‘——2: W/ Lt -
Qe T Morle~
2) solve LP Restricted Master problem (LPRM) with subset Ji, <=~ 7

3) solve pricing subproblem for LPRM with Ji to search for an improving non basic

variable x; (with negative reduced cost if min problem) and the associated column,

4) [if 3 such x;) update Jii1 := Ji U {/}, set k := k + 1 and goto (2);
othg[\!vELPRM optimal solution is also optimal for LP relaxation of original ILP.

Observation: Column generation (CG) yields an optimal solution of LP relaxation and
hence a bound on optimal ILP solution value.
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Example cont.: 1-D cutting stock problem

\ onrte Con e It oo
/ %%J—’JA,W@M’C&J

LP relaxation of Master problem (LPM): s e S
Zipm = min Zj'.':lxj Sut
sit. >l apg > bl Viel={1,....,m}
x; >0 Vjiedx={1,...,n}.
and its dual:
e 2k b
fex -
e S eyt B < b e-i
“exT oo =0 el

When solving LPM with Simplex method:

— T e
w e _C_,\)T= Sy T = 7. = < — Q. 7
R e LAty b LN NI S k|
ol oA w

— _
> T TR o

Qe . o)
dannl ARt
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2% ot —Co—I W

Start with LP Restricted Master problem (LPRM) with Jo C J = {1,...,n},

guaranteeing a feasible solution.

LPRM with Jo:

. n <

ZiprRM = Min 2 X ~ =
s.t. ZjeJoa,'ijZbi viel={1,...,m}

x>0 Vj € (b,

ove) Lot
WJ‘\-"C‘ —C~g o

Reduced cost of non basic variable x; is still ¢; =1 — >, ajy;.
Dual of LPRM with Jo:
o7
max >n by —

s.t. Z:ll ajyi <l Vjedh
yi>0 Viel={1,...,m}.

Let x* and X‘? be optimal solutions of LPRM and its dual, respectively.
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Search for new improving non basic variables (columns/patterns)

Look for a non basic variable with smallest reduced cost and corresponding pattern
«a € ZT by solving the pricing subproblem:

(L P b T T (O ansn —Fone)
M:to%jvof trwwc%%mﬁ

T = 2wt (1)
D
e o e 2+ ‘V&A'~€I=§'4.,»A~,M~}

Integer Knapsack problem that can be solved in O(mW) using Dynamic Programming.

Cora o2 Ao — —Losace, a~ars0%o,
tmb_a\. o ’NMJ;'M"JW e dacods Cont
Two cases: / =S e Comt Voot Badamonl Ela ARt

@ if ¢* > 0, the optimal solution of current LPRM is also optimal for LP relaxation,

@ addin current LPRM any non basic variable associated to a cutting pattern
«a € ZT with € < 0, improves (decreases) the objective function value.
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Example cont.: 1-D cutting stock problem

ale, ooch
/w&ﬁfi ~ % Con 26 mel0o
(' 1.25 ( 35
W=39m, w= 1 and b= | 171
0.8 133

1 0
Initial patterns: A; = <1> waste of 0.05, Ay = (1) waste of 0.5,
2 3

& tlun clisace
s = - 2 0
cac. _ _
- ,:_u/ﬂﬂ ""“%}i:w SR Az = 2 waste of 0.6, Ay = g waste of 0.9
- ol gunse >

From J. Lundgren, M. Rénnqvist, P. Varbrand, Optimization, Studentlitteratur AB, Lund, Sweden, 2010.

LP Restriced Master problem:

min z= Z}‘Zl Xj
1 0 2 0 35
s.t. 1lx1+ (1] x+[0])x3+ |3 ] xa> (171
2 3 1 0 133
x; >0 vje b =1{1,2,3,4}
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Optimal solution of LPRM: x* = (35,21,0,38.33)" with value z* = 94.33

el ~» @ LB o &R
Optimal dual solution: y* = (2,1, 2)t T TR of ke e
ptimal dual solution: y* = (3, 3,35) TLP raefRemn~
\5?—&'&'“"

wy et S8 WS e

Pricing subproblem: L e
2 Ey -+ ,_6('5 )
== 9 — FPo = 24— owt Fora
e c _\% - / .-
ot T paea SW () 425 Xat LXet 02Nz 2

<er —
oAk A TReoo \

4 = T
Optimal solution (integer knapsack): a* = (0,3,1)f with value © = —%. = ZoseR €5 JaelT
S e R
A/ oo~

Since € < 0, adding new pattern As = (0, 3,1)! will improve (decrease) the objective function

value.

Optimal solution of LPRM with J; = {1,2,3,4,5}: x* =(35,6.625,0,0,43.125)" with
value z* = 84.75.

: ions yr (Ll 11
Optimal dual solution: y* = (3, 7,7)"
\ L e e
.a,s»‘b
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Pricing subproblem:

o= 44— = T« T
o C© o=
ot Z wude =W E 2 X
e
P Y

._1_(2:&,_4. ‘Z;;Q1—r “q':«:(:s}

et 0N T 2T

with optimal solution a* = (0, 3,1)* (as before!) and € = 0. Crale i)

Thus x* = (35,6.625,0,0,43.125)" is a timal sol. of LP relaxation of original ILP.
= 1 P
|

N.B.: in general many |tIrat|o—Zsl£7 f oo L s e 30
73 -

Rounding up: x = (35,7,0,0,44)! with z = 86.

o0Q0 co0llo ol
Since z; ppy = 84.75, lower bound is 85. 2T 0o ore ontacons

Optimal ILP solution: x;, p = (36,6,0,0,43)" with z;p = 85.

Edoardo Amaldi (PoliMI) Optimization Academic year 2023-24
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General remarks

@ Initial set of columns (Jy) has a strong impact: rich enough to guarantee initial

feasible solution but not too large to reduce computational load. e,
carpCConn t st tom
Con .t,_,go_ ‘TA)UMO y: .~ QM, \/\:AA/ J) >
@ Heuristics for pricing sub roblem as long as an improving variable (column) is ~w=e=

found. Exact method only to certify that LPRM solution is also optimal for LPM.

@ CG methods can be viewed as cutti lane methods to solve the dual of LPM,

@ Strong practical impact of CG due to great flexibility to model complicated
restrictions.

@ To find an optimal solution of original ILP, CG can be embedded in a

Branch-and-Bound framework = Branch-and-Price method.

Computer Lab 3: apply Column Generation to the airline crew pairing problem.

Edoardo Amaldi (PoliMI) Optimization Academic year 2023-24 12/12



3.10 Lagrangian duality and relaxation

Generic ILP g::?f:
min{c'x : Ax>b, Dx>d,x € Z"}
with integer coefficients. sl

Suppose Dx > d are "complicating” constraints.

-
Idea: “ Delete Dx > d and, for each one of them, add to objective function a term
|

\JWith a multiplier u;, which penalizes its violation.

More general setting:

min{c'x : Dx>d, x€ X CR"} (1)
] xBTS

Qo &w?’/“@
\chkj e Lo —nRAL

Edoardo Amaldi (PoliMI) Optimization Academic year 2023-24 1/26



Definition: Given Ve e WW“;DWZ
z**mi"{sfa: Dx>d, x€ X CR"} ()

For each multipliers vector Q Lagrangian subgroblem is

E (U)—mln{CX+u(d Dx):xeX} (3)
where — — ZM.\ (o{-—v"(')b’) b}
L(x,u) =c'x +gt(g — Dx) Lagrangian functlon of rimal (2),

So(coa esoxl S PARC)
K_ ( Cactn e M vy

w(u) = min{L(x, u) : x € X} dual function.

Proposition: For any u > 0, the ian subproblem (3) is a relaxation of (2).

Proof: o, o, fxeX:Dxzdie X
Wlorn Perzo oA xeX (o o oL Ra o 2y

clant wrwey = ETX . A . _
Wl T eTx u—\“"(-i ‘)5) ~ ¢ vxeX M‘wstA}n

= =
zo

we

aH

Corollary: If z¥ =min{c'x : Dx > d, x € X} is finite, then ~ w(u) <z* Vu>0.

Wt Bl W ris) wR et
.&%‘)tkn_mo—,mo«vg 2w, et — — .
t- . e
Sonm Cect (B mio o Talex— wees 2 LSS
UATU O
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Federico Angelo Mor
u appare in w(u) perché è un parametro:
l'ottimizzazione è sempre sulle x, mentre u è un parametro che scelto e fissato all'inizio cambierà la soluzione ottimale x_star.


: ; WOV +
To determine tightest lower bound Bt SN o

Cann AV
C,o«v\c‘,a\ra—
R o

Definition: Lagrangian dual of primal problem (2) is t& WNM =

W = Mmex W)
Pt M2 O /
Note: Relaxing linear constraints, L(., u) is linear. Subproblem (3) must be "sufficiently easy”.
. . . . o mnle tLU~ O AR <l
DnneeAsstUunves

For LPs Lagrangian dual coincides with LP dual.

Corollary: (Weak Duality)

For every pair of feasible solutions x € {x € X : Dx > d} of primal (2) and
Lagrangian dual (4), we have o
w(u) < c'x Z

CHlry i ERris ANSSRY ConnnTFon &3 Cro-efa

cts X . TTean .
, tCopn RITLRN O TR
of pa e By am S ) T etk s
[ ¥ 5 o - =

' h
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Consequences:
z

i) If X feasible for primal (2), & feasible for Lagrangian dual (4) and c'% = w(f),

3]

then X and @ optimal for respectively (2) and (4).

if) In particular w* = max,>o w(u) < z* =min{c'x : Dx > d, x

€ X}.
If one problem is unbounded, the other one is infeasible.

Recall: For rimal-dual pair of bounded LPs, we have strong duality (w* = z*).

Observation: In discrete optimization we can have a duality gap, i.e., w* < z*.

+ ts> —Loasssreroiias
wlhot “Ciopmenrs P W ARV > Connstesaint !

. . 2y €
ILP with equality constraints: — ot G AN
we MGR_M, o ZO
Lagrangian dual is |
max w(u) \ N_QA, N =aL
u€RrRmM 5){ = wr—
_O=r - ~=_‘= = (f,
= wnt = AT
T o
“Caaa_ Zo -°
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Example: Uncapacitated Facility Location (UFL)

Variant with profits p;;, fixed costs f; for opening the depots in the candidate sites, and total
profit to be maximized.

MILP formulation:

oAASR
At et zf=max Yoy EjeN pijXij — ZjeN fiyj ot
==
s.t. _— ZjENXff =1-_ VieM Sopnt (5)
. . L
S s —— — xj Ly vieM,jeN
_yief{o,1} vjeN
e Eoan (b‘a/mw‘t . .
Hoor SSERLS 0<x;<1 Yie M,jeN
oS et

Relaxing constraints (5), Lagrangian subproblem:
./ — <
Weasy = Oowex 53 R ,-57”"*[_;5“““‘1 e " J>7

B T R L " (©

N 5 EM R (7)
- O R SR EIERESTT (8)
o ‘
ox xwy T YW P crn oo oty Fncorimso S
,:E_,,,,‘-gy 1A)] Al pn R RO/ OAR S
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Indeed w(u) =37 ;cp wj(u) + > ;e Ui where

wi(u) = max 37 m(py — ui)xj — fiy

s.t. xij < y; VieM
yj € {0,1}
0<x;<1 vieM
For each j € N, the subproblem an be solved by inspection:

- w\#w?j Z:; J —%\—iﬂ/c;uvg: J«:SO&AHSVM-"D ©
S L3f Hm L G fve et Xy = L eey il COrents
G wucl, T2 aSeNt (& \d e
~le o, oo e 22 S T
T e e S

O A~ tRe %4 ‘Carchaon—
w; = 2 Mk(w.&é"m“;/°>—f)

ccororn Sl O s W ()
vl t2e X /ot e )
o A e AR

See Chapter 10 of L. Wolsey, Integer Program‘ming, p. 169-170
\ ?

Edoardo Amaldi (PoliMI) Optimization
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Properties of Lagrangian subproblem and dual function

Proposition: If u > 0 and
i) x(u) is an optimal solution of Lagrangian subproblem (3)
i) Dx(u) > d —~ 5% S Sk SRS s

iii) (Dx(u))i = d; for each u; > 0 (complementary slackness conditions)

2).

then x(u) is also optimal for primal
Qo e ot
e e Tl CNEE
ST

obuchz):—,—ow‘—u
Qs Kooy
=S won~ EWA/”Q’M_,O oot ASSS
pas—L R
/ rnmorn ) (X
wel1 o €2y warTprle & LY ~
/ gida%v)ﬁo,m)/mt-o%w(‘&‘mw
J_Q,QMW =
onA T W ZConaon (s NS
sl )

\
Proposition: Dual function w(u) is concave. ey
SISV ISR &

wews) —
N

lllustration: ) , :
‘ / 1' !
R \
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3.10.1 Strength and choice of the Lagrangian dual

Characterization in terms of an LP.
oo —Cis) AAanClA
?’f""’; e Pevep e Y T SR 2 e RO
. H 2, 200~
Theorem: Generic ILP wes 2ot

min{c'x : Ax>b, Dx>d, x€ Z"}

with integer coefficients. G TSR
Let w(u) =min{c'x+u'(d— Dx) : Ax>b,x € Z"},/ RPN IS
— e e o~
w* = max,>o w(u) and X = {x € Z" : Ax > b}, e
e —

then & zee R
eventive-) &* = min {gtg :Dx>d,x € conv(Xm

O ef N
e oV Comsr K O R
" Convexification” of X. et Coantin &#Q%.ea. Satason LT
¥ o)A t)

Corollary 1:\‘“‘\Since conv(X) C {x € R" : Ax > b},
\ . t M= .. * *
\ [zzpl= min {c'x 1 Ax>b,Dx>d,x eR"}[<w" <27

R T T SRR SN
We may have zp < w* < z*. T R oSl .
we ) o e~oax e O COAANDTIL TRt con (X
w/vsu_wt R NMM)N:M q_&J te,g,vv\»( ool ) S wetl. tlL Rae
) e o
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Illustration: D. Bertsimas, R. Weismantel, Optimization over integers, Dynamic Ideas, 2005

~ we
. (40) AN T
/

min 3X1 — X2 '
st xi—x  >-1 (10) e R
—x1+2x <5 (11) % .
31 4+2x; >3 (12) s
6x1 + X2 <15 (13)
X1, X2 > 0 integer

|
\ <2t
\__ fw,wz; e &£

xup = (1,2)t with zyp =1 and x;p = (1/5,6/5)" with z;p = —3/5.

- Dualize (10): For every u >0, w(u) = min;, ,)ex 3x1 —x2 + u(=1 —x1 + x2)
where X is the set of all integer solutions of (11)-(13).

- Find optimal solution u* of Lagrangian dual: w* = max,>o w(u) and optimal solution

xp = x(u*).
Represent conv(X) N {(x1,x) € R? : x; — x; > —1} (in grey).

Obtain x, = (1/3,4/3) with w* = —1/3.
Thus zp = —3/5 < w* = —1/3 <znp=1

Edoardo Amaldi (PoliMI) Optimization Academic year 2023-24 9/26



Illustration: D. Bertsimas, R. Weismantel, Optimization over integers, Dynamic Ideas, 2005

min 3x3 — x2 ‘
s.t. X1 — X2 > -1 (10) - '
—x1+2x <5 (11) : e
31 4+2x; >3 (12) s
6x1+x <15 (13)
X1, X2 > 0 integer I'

xup = (1,2)t with z;p =1 and x;p = (1/5,6/5)" with z;p = —3/5.

- Dualize (10): For every u >0, w(u) = min;, ,)ex 3x1 —x2 + u(=1 —x1 + x2)
where X is the set of all integer solutions of (11)-(13).

- Find optimal solution u* of Lagrangian dual: w* = max,>o w(u) and optimal solution
xp = x(u*).
Represent conv(X) N {(x1,x2) € R? : x; — x2 > —1} (in grey).

Obtain x, = (1/3,4/3) with w* = —1/3.
Thus zp = —3/5 < w* = —1/3 <znp=1
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Drawing w(u) we can verify that u* = 5/3 with w* = —1/3.

(2) wewn)
Ase, mf,—f—”(M 2o

Edoardo Amaldi (PoliMI)



Illustration w(u):
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In some cases Lagrangian relaxation is as weak as LP relaxation.

Corollary 2: If X = {x € Z" : Ax > b} and conv(X) = {x € R" : Ax > b}, then

/

@: Tgé( W(g)@]: min {c'x : Ax 267 Dx>d,x e R"}.

Example: Binary knapsack problem Jernat m il
max  z= 31, pixj
st XYiljax<b
x €{0,1}  Vj

and its LP relaxation

[\”W n n

zip—kp = max {» pjx : ajx; < b}.
020, N E : j % E 1 Xj
€ L‘efa.m% . Y 56[0’1] j=1 j=1

X = {x € {0,1}"} and conv(X) = {x € [0,1]"}, and 0 < x; < 1 are already contained

i i ol tn ts ) Keu
in LP relaxation. 200, &2 oyt

Corollary 2 implies: w* = z;p_kp.

Edoardo Amaldi (PoliMI) Optimization Academic year 2023-24 12/26



Choice of the Lagrangian dual

Which constraints to relax to get tighter bounds?

Choice criteria:
i) strength of the bound w* obtained by solving Lagrangian dual,
ii) difficulty of solving Lagrangian subproblems <2 & S5t e
w(u) = min{c'x+ u'(d — Dx) : x € X CR"},

i) difficulty of solving Lagrangian dual: w* = max,>o w(u).

For (i) we have the LP characterization,

(i) depends on the specific problem,
(iii) depends, among others, on the number of dual variables.
ool
— P T oo, SO T ot Rann
Look for a reasonable trade-off. = T sei wor Some@mt e

v o
'Wdemmtwy%t— oo SwsS
_v_)we@:(—td‘ﬂ‘

See exercise 5.3 on the generalized assignment problem.
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wen Pex)

contiakt oo —t xe X

3.10.2 Solution of the Lagrangian duals
& & L wotln ) Comme X TR0
2 WA o +—

Generalization of the gradient method for C! functions to convex piecewise C!

ones (not everywhere differentiable).

Definition: Let C CR" and f : C — R be convex.

e v € R" is a subgradient of f at x € C if T- ,Vﬁf?gdﬁ@iﬁg

flx) > f(X) +1 (x—%) V¥xeC
e the subdifferential, denoted by 0f(x), is the set of all subgradients of f at x.

Example: For f(x) = [x|, y=1if x>0, vy=—-1ifXx <0, and 9f(x) =[-1,1] if x=0

Properties:
A convex f : C — R has at least one subgradient at each interior point X of C.
x* is a global minimum of f if and only if 0 € Of(x*).

Edoardo Amaldi (PoliMI) Optimization Academic year 2023-24 14 /26



Subgradient method | P
Given min,epn f(x) with f(x) convex.

Start from an abitrary x;.

“/ ot i e
- i 1 N 1 [t
At k-th iteration: consider v, € Of(x,) and set IR L ters Se ST /

- — c
( Xpp1 7= X = kY
+
T o SRR 0

with a >0

Observation: No 1-D search (optimization) because for nondifferentiable functions a

subgradient v € 9f(x) is not necessarily a descent direction!

-
- T ot
oA — ~ -
'_/ Rl ‘2 '#:,%1—
= Cont 2o G ne
e TG w22 P NS
P onE 2L e e T Y
"f"“d),@“;’;"‘"'zau‘ P
\e")w e~e~o
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Example:  min_j<y <1 f(x1,x2) with f(x1,x2) = max{—x1,x1 + x2,x1 — 2x2}

Level curves in black, points of nondifferentiability (t,0), (—t,2t) and (—t, —t) for t > 0, global
minimum x* = (0, 0).

G
e o 02 &
Rk X
|
Conmours 2
off
|
39
= © J\—\z
-2 =1
/‘;(\zu
dewl ssep
7 % Py
. — - Lo
L7 N
(-1,-2) S~ NPT
-t
oo ’,L’h.‘(?,)
Lot Kk,"(o) oAl 2 oo, Mnectoo,
— ss '_;""*""ca‘go Pt os ) Rt =l
et tirag Aol o Aan (O,D)

EER?: & = Eu-Yie @i, Y2 [ WO LMD !
— = tRe JonaCru o~ Ixe QP.// ot Oan ~

From Chapter 8, Bazaraa et al., Nonlinear Programming, Wiley, 2006, p. 436-437
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C oo o~
T eamrmanntse
Theorem: ta o oo e
If £ is convex, limjy| o0 F(X) = 400, Iimk_>oo akx =0and Y2, ax = oo, the
subgradient method terminates after a finite number of iterations with an optimal

solution x* or infinite sequence {x,} admits a subsequence converging to x*.

Stepsize:

In practice {«} as above (e.g., ax = 1/k) are too slow.

An option: oy = agp* for a given p < 1. A more popular one (min problems):
Fxi) — f

Ok = Ek
Iy, M7

where 0 < g, < 2 and f is either the optimal value f(x*) or an estimate.
R0 I Ade DA Qs W Carl huswy

A AVANANARL A RLAL Rt A T
tveﬂ\:g;yw Ot (R eRa URYE) e

Stopping criterion: prescribed maximum number of iterations
(even if 0 € Of(x,) it may non be considered at x,).

oru 2L 5 OFf wu nt:,s,elzé@

O TR A DI~ AR AN T
tRa oRy E~~ctvOor-

Need to store the best solution x, found.

Simple extension for bounds (projections).
Academic year 2023-24 1726



Subgradient method for Lagrangian dual

max w(u)

where w(u) = min {c'x + u*(d — Dx) : x € X CR"} is concave and piecewise
linear.

ot to @l
"Jm Bt ERn KT

WO t-Ee~e On
Simple characterization of the subgradients of w(u): e on MJM k2

Proposition: pero=w e S e
Consider i1 > 0 and X (&) = {x € X : w(li) = c’x + i'(d — Dx)} set of optimal
solutions of Lagrangian subproblem (3). Then Y

o For each x(&i) € X(ii), the vector/(d — Dx(i1)) € dw(&) [~

e Each subgradient of w(u) at & can be expressed as a conv% combination of
subgradients (d — Dx(&)) with x(&) € X(&).

1%
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Procedure:

1) Select initial uy and set k := 0.

2) Solve Lagrangian subproblem
w(u,) = min{c'x + u(d — Dx) : x € X}.

If x(u,) optimal solution found, (d — Dx(u,)) is a subgradient of w(u) at

Uy.
.. AV W cane. () 0o e a s
3) Update Lagrange multipliers: NARSD TN L B e e

Upeyr = max{0, uy + au (d — Dx(uy))}

with, for instance, ay = 6;(M, where W is an estimate of optimal

value w*

4) Set k:=k+1
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3.10.3 Lagrangian relaxation for the STSP (Held & Karp)

Symmetric TSP: Given undirected G = (V/, E) with cost ¢, € Z* for each e € E,
determine a Hamiltonian cycle of minimum total cost.

ol o
min Y ecE CeXe e ) o
- % . ,,/:\ /- h
s.t. Zee5(1)§e = 2’/ VI € V e Ké:&' (14)
YecE(s)Xe S |S[—1 VSOV, 2<(S[<n-1 (15)
xe € {0,1} Vec E

where E(S) ={{i,j} € E:i€S5,jeS}

. . soa
Observations: e oY e sE

i) Due to (14), half of the (15) are redundant:
ZeeE( Xxe < |S| — 1 if and only if ZeeE(S Xe < |S| — 1, where S = V\ S.

Thus all (15) with 1 € S can be deleted.

i) Summing over all (14) and dividing by 2, we obtain 3~ . xe = n that can be added.
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incident to node 1) in which all nodes have exactly two incident edges.

>°(<-vr\,\~\_22 wiormowin €L

Recall: a Hamiltonian cycle is a 1-tree (i.e., a spanning tree on nodes {2,..., n} plus two edges
Tor) GACt) O e naloct Caloln
Since tlor~ 2 vnostent e Xeos

ZeEE CeXE"‘Z,Ev U,(2 Zeeé() ): ZrceXe,-f‘Z(—M-—#}Xe]—f—d% 2 unw ,

ee€
relaxing the degree constraints (14/)/for all nodes except node 1,

Lagrangian subproblem: t\h""“&c o B Ke Seeove LOU% TUESSe v
O~ UV LRl Sat ool g

w(u) =min Y p(ce — Ui — uj)xe +2 0 Ui

s.t. ZeE(S(l) Xe =2
Yece(s)%e < IS -1 VSCV,2<|S|<n-11¢S
ZeeEXe =n
Xe € {Oa 1} Vee E

- ond &R +ts
where vy =0 and E(S)={{/,j} €E : i€ S,j €S} i @w%%-t
o - tres 2E2|

Note: Set of feasible solutions = set of all 1-trees. - b‘é"_‘aﬁ-"zle‘u;,wqw
r oS~
. olve ST
Lagrangian dual: max,cgivi . ,,—o w(u) =S wa o TR o 7
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No, the u_i are free here since we lagrangianized an equality constraint


Example from L. Wolsey, Integer Programming, p. 175-177

Undirected G = (V/, E) with 5 nodes and cost matrix:

cu;

— 30 26/ 50 40

—  — @4 40 50

- - I 24 2

- - - - =

Dual function:
w(u*) = min E (ce — uf — u‘;‘)xé‘ +2 E uf . x* incidence vector of a 1-tree
e={ij}€E iev

Notation: cé‘. =ce—uf — uJ’.‘ for e = {i,j} € E

- A
@t-@th_

(o .
Subgradient v witl*{ yh=(2- >ees(i) x@where x¥ = x(u¥) is an optimal solution of
Lagrangian subproblem at k-th iteration.

Since Zeeé(l) Xe = 2 is not relaxed, 'y{‘ =0 for all k.
Starting from u? = 0 we then have uf =0 for all k > 1.
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Feasible solution of cost 148 found with primal heuristic:

X12 = X23 = X34 = X45 = X51 = 1 and x;; = O for all other {i,j} € E

Solution of Lagrangian dual starting from u® = 0 with ¢ = 1:

Solving Lagrangian subproblem with costs:

o ELl2ASTET o TS
-« Arvnn CO o
—we s;‘_‘_-’ S o Son AT Sa

(cg = ¢, for each e € E since u® = 0),

we find x(u°) corresponding to 1-tree of cost 130:

X12 = X13 = X23 = X34 = x35 = 1 and Xjj = 0 for all other {i,j} c€E

@, = 7=
y 2-Z\ / 8\
2-2 /
- o=/ i) (<
C 1_:\'- <z /
Optimization Academic year 2023-24 23/26

Edoardo Amaldi (PoliMI)



Knowing x(u®), we can compute w(u®) =130 + 0 (cost of 1-tree 4+ 2>

Subgradient

Update Lagrange multipliers:

1

u=u
Since
we have
“w
Cuy P> €y — L

Edoardo Amaldi (PoliMI)

0

w — wl(u
W)
AT
C
W
R

=0+

0

0
= -2

1

1

(148 — 130)

6
30 26 50
— 24 40
- 24
30 32 a7
— 30 37
— — 27
Optimization

40
50

30

37
47
29
24

iev i )

Academic year 2023-24
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As optimal solution x(u') of Lagrangian subproblem with matrix C! we find 1-tree of cost 143:

X{2 = X13 = X23 = X34 = x45 = 1 and Xjj = 0 for all other {i,j} €E

and w(u') =143 +2%, .\ ul =143

Since
0
0
A= -1 1,
- 0
1
we have
0 0 0
SN C 2?7 Cid) SR (NN N C T U BN
- 02|~ 3 2 0 3
3 1 I

Edoardo Amaldi (PoliMI) Optimization Academic year 2023-24 25/26



Therefore

— 30 345 47 345
—  — 325 37 445

c? - - - 295 29
- - - - a5

and we obtain x(u?) that corresponds to 1-tree of cost 147.5:
X12 = X15 = X23 = X35 = Xs5 = 1 and x;; = O for all other {i,j} € E

and w(u?) = 147.5 +0.

Since all costs ce are integer, the feasible solution of cost 148 found by the heuristic is optimal!

o o AR Pt O o e XKoac olax AUl

s o m&bx’g{@/ SR BACIGZ A o et e
e o moen —Lornols.

o Lo
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