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Abstract

Clustering is a key technique for identifying patterns and structures in complex
datasets, whose relevance is intensified in spatio-temporal contexts where obser-
vations are simultaneously influenced by multiple factors such as space, time, and
covariates. This complexity can be effectively tamed by model-based clustering
methods, which often provide more accurate and interpretable results with respect
to traditional frequentist approaches thanks to the possibility of encoding data
information directly inside the model. To this end, the Dependent Random Parti-
tion Model (Page et al., 2022) is one of the most relevant Bayesian models due to
its explicit consideration of temporal dependence in the partitions. However, the
current formulation of the model and the implementation of the associated MCMC
algorithm lacks the inclusion of covariates, the handling of missing data, and the
efficiency in execution times. Therefore, in this work we improve the original model
by addressing those issues through updates on the model formulation and a brand
new implementation in Julia (Bezanson et al., 2017). These advancements are then
tested on synthetic and real-world datasets, including air quality data from the
AgrImOnIA project (Fassò et al., 2023) in Lombardy, Italy.

Keywords: Bayesian modelling, clustering, spatio-temporal data, MCMC,
Julia
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Sommario

Il clustering è una tecnica fondamentale per identificare strutture e pattern in
dataset complessi, la cui importanza è intensificata nei contesti spazio-temporali
in cui le osservazioni sono influenzate simultaneamente da molteplici fattori come
spazio, tempo e covariate. Questa complessità può essere efficacemente gestita da
metodi di clustering basati su modelli, che spesso forniscono risultati più precisi e
interpretabili rispetto agli approcci frequentisti tradizionali grazie alla possibilità di
inserire informazioni riguardo ai dati direttamente all’interno del modello. In tal
senso, il Dependent Random Partition Model (Page et al., 2022) è uno dei modelli
bayesiani più rilevanti in quanto tiene conto in modo esplicito della dipendenza
temporale delle partizioni. Tuttavia, l’attuale formulazione del modello e la sua
corrispondente implementazione dell’algoritmo di campionamento mancano del-
l’inclusione di covariate, della gestione dei dati mancanti, e di efficienza nei tempi
di esecuzione. In questo lavoro abbiamo quindi migliorato il modello originale
affrontando tali problemi tramite aggiornamenti sulla formulazione del modello e
una nuova, fiammante implementazione in Julia (Bezanson et al., 2017). Questi
sviluppi sono stati poi testati su dataset sintetici e reali, compresi i dati sulla qualità
dell’aria in Lombardia del progetto AgrImOnIA (Fassò et al., 2023).

Parole chiave: modellistica bayesiana, clustering, dati spazio-temporali,
MCMC, Julia
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Introduction

Clustering is a fundamental technique of unsupervised learning where a set of
data points has to be divided into homogeneous groups of units which exhibit a
similar behaviour. It has long been a powerful tool for identifying structures and
patterns in data, especially in contexts where relationships between observations are
complex such as when the target variable is affected by multiple factors simultane-
ously. For this reason, clustering methods have become increasingly popular across
a variety of scientific fields, including social sciences, climate and environmental
analysis, economics, and healthcare.

Clustering approaches are generally divided into two main categories: algorithmic
and model-based methods.

Algorithmic methods such as hierarchical, partition-based, or density-based
methods, address the clustering problem as an optimization problem where a certain
metric has to be minimised (or maximised). For instance, partition-based methods
as k-means (Hartigan et al., 1979) generate clusters around a set of centroids which
are iteratively updated to minimize the within-cluster variance, i.e. the mean
squared distance of the units from their assigned cluster centroid. However, these
methods require specifying the desired number k of clusters in advance and are
limited to numerical data. Hierarchical clustering methods, on the other hand, build
a tree-like structure of clustering solutions, represented as a dendrogram, which
captures the relationships among potential clusters (Jain et al., 1988) (Kaufman
et al., 1990). This is done through either an agglomerative (bottom-up) strategy,
where each unit starts in her own cluster that gets iteratively combined with
other units or clusters, or in a divisive (top-down) strategy, where units start in
a single cluster that is iteratively subdivided. These methods do not require a
predefined number of clusters, but are highly sensitive to the choice of the distance
metric which drives all merging and splitting decisions. Consequently, changing the
distance metric can lead to significantly different clustering configurations. Lastly,
density-based methods such as DBSCAN (Ester et al., 1996) define clusters through
a density metric, which can produce more flexible structures with clusters of varying
shapes unlike the ones generated by means of a distance metric. However, these
methods remain sensitive to the choice of the density parameters and may yield
clusters that are less interpretable and irregular.

In summary, these algorithmic approaches are largely heuristic (Gormley et al.,
2022), performing well only with well-separated clusters or standard geometric
forms but often failing in more complex scenarios. Furthermore, lacking a solid
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2 Introduction

statistical foundation, these methods can lead to unsatisfactory results and provide
no assessment about clustering uncertainty.

An alternative and more flexible approach is therefore provided by model-based
methods, which assume a probabilistic modelling of the data. This is generally
achieved through a mixture model (Bouveyron et al., 2019) (Grün, 2018) (Böhning,
2007), where each mixture component corresponds to a cluster with its specific
cluster parameters. In this way, each observation is assumed to arise from one
of the J possible groups which are mixed together in various proportions. More
formally, for each unit i = 1, . . . , n we have that

f(yi|π,ϑ⋆
1, . . . ,ϑ

⋆
J) =

J∑
j=1

πjfj(yi|ϑ⋆
j)

where yi is the data point of the i-th observation, π is the set of weights satisfying
πj ∈ [0, 1] for j = 1, . . . , J and

∑J
j=1 πj = 1, ϑ⋆

j are the cluster-specific parameters,
and fj(·|ϑ⋆

j) is the density of the j-th cluster (Grazian, 2023). A common modelling
choice is a Gaussian mixture model, where each cluster follows a normal distribution
and thus making ϑ⋆

j = (µ⋆
j , σ

2⋆
j ), or ϑ⋆

j = (µ⋆
j ,Σ

⋆
j) in the multivariate case. This

choice is flexible and effective since, especially in the multivariate case, Gaussian
distributions are able to capture very different clustering structures (Franzén, 2008).

In this model-based approach, the goal is to estimate the cluster-specific pa-
rameters ϑ1, . . . ,ϑJ and the mixing proportions π1, . . . , πJ . The estimation step is
often performed through the Expectation-Maximization (EM) algorithm (McLach-
lan et al., 2008) (Ng et al., 2004), which iteratively refines the estimates of the
parameters via maximum likelihood estimation (MLE). Once the cluster-specific
parameters are estimated, each observation can be assigned to a component, i.e. to
a cluster, based on the highest posterior probability of belonging to that component,
which can be computed through the Bayes rule.

This approach of a mixture model can be naturally reframed into a Bayesian con-
text. As opposed to MLE, Bayesian mixture models incorporate prior information
on the parameters, allowing to assess uncertainty in the clustering structure (Wade,
2023) since each parameter is treated as a random variable with a corresponding
prior distribution. The Bayesian framework is considerably much powerful and
accommodates more complex formulations. For instance, by adopting a Bayesian
non-parametric approach, an infinite mixture model, which does not require a
predetermined number J of components, can be introduced (Grazian, 2023).

However, implementing Bayesian models requires the design of Markov Chain
Monte Carlo (MCMC) algorithms, which can often be challenging and compu-
tationally intensive. In MCMC algorithms, complicated or impossible analytical
calculations are replaced by simulated approximations (Franzén, 2008) derived from
a Markov chain that ultimately generates samples from the posterior distribution of
the model parameters, allowing inference on the generated quantities (Gelman et al.,
2003) (Robert et al., 2000). The iterative nature of MCMC, along with the need
for a burn-in period to allow convergence of the chain to its stationary distribution,
implies that considerable computational resources may be needed, particularly for
models with high-dimensional parameter spaces or when working with large-scale



Introduction 3

datasets. As a result, while Bayesian methods provide a robust framework for mod-
elling uncertainty and incorporating prior knowledge, they also demand significant
computational effort and expertise in algorithm design to effectively realize their
full potential.

Nonetheless, the effectiveness of Bayesian model-based approaches, along with
their computational demands, becomes particularly pronounced when applied to
spatio-temporal datasets. This type of data, in which observations are collected
over time and across various spatial locations, is inherently complex due to the
interplay between spatial and temporal dimensions; a complexity that is further
compounded when covariates are also available. Consequently, compared to tradi-
tional algorithmic methods, model-based methods are fairly more suited to tackle
this task as they are able to integrate all these different levels of information. A
model-based analysis of spatio-temporal data should also account for the temporal
dependencies among the partitions to more effectively identify trends occurring over
time and thus producing clusters that evolve in a more gentle and interpretable way.
Additionally, these methods should also provide efficient implementations suitable
for large scale datasets, which are commonly accessible in this spatio-temporal
context.

Recently, the use of Bayesian models to perform clustering has become more
popular, particularly in this field of spatio-temporal datasets. Bayesian clustering,
in fact, allows to incorporate prior information into the model thereby enhancing
the quality of the results. Throughout the years, several models have been proposed
in the Bayesian literature. Among these, the Dependent Random Partition Model
(Page et al., 2022) is particularly relevant as it explicitly addresses the tempo-
ral dependence of partitions into the model formulation. However, the current
implementation of its MCMC algorithm, written in C and accessible via an R
interface, lacks some significant features. These comprise the inclusion of covariates,
that could further improve the generation and informativeness of the clusters, the
handling of missing data, and an efficient implementation that would accelerate
the fitting process.

In this work, we tackled these three issues by enhancing the flexibility and
performance of the original model. We revised the model formulation and the
associated MCMC algorithm through the incorporation of a new regression term
that accounts for covariates in the likelihood, as well as modifications to the
distributions of the variance parameters. The regression term facilitates a more
accurate estimation of the target values, which subsequently leads to improved
estimates of the model parameters. The change to the variances distribution also
enhances the quality of the sampled variables as it restores conjugacy within the
model, thereby improving the mixing properties of the Markov chain during the
sampling process.

However, the core updates occurred behind the scenes. We revised the definition
of the prior distribution for the partitions, originally designed to generate spatially-
informed clusters that evolve over time, to also include covariates information. This
inclusion is expected to significantly improve the accuracy and interpretability of the
generated clusters estimates, given the additional information provided by covariates.
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Moreover, we developed a brand new implementation of our updated model and its
associated MCMC algorithm in Julia, rather than C. This innovative choice of the
Julia programming language resulted in a remarkable performance improvement,
achieving speedups of up to 2x compared to the original C implementation.

Lastly, our generalized model can now accommodate datasets with missing
values in the target variable, thereby providing additional flexibility to address
real-world scenarios in which data may be absent due to malfunctions or inactivities
of the measuring units.

In the following chapters, we will detail how these updates were derived and
demonstrate how they led to an improvement from both statistical and computa-
tional perspectives.

Chapter 1 provides a brief overview of the literature on Bayesian clustering
models for spatio-temporal data, followed by an in-depth analysis and description
of the Dependent Random Partition Model and our proposed generalization.

Chapter 2 explores the computational aspects of implementing the MCMC
algorithm, motivating our choice of the Julia programming language and discussing
various optimization opportunities that emerged during the development process.

In Chapter 3 we evaluate the performance of both the original model formulation
and our generalization. We start by comparing their results under identical testing
conditions, specifically using the same dataset, hyperparameters values, and MCMC
iteration settings. Next, we examine the effectiveness of our updates by considering
fits that involve missing data and fits that incorporate covariates. These experiments
will be conducted using both a synthetic and a real-world dataset. Finally, we
present a comparative analysis of the computational performances of the two models,
detailing execution times with respect to the size of the dataset and the information
levels included in the fit.

Finally, in Chapter 4, we briefly review the strengths and drawbacks that this
work revealed, and suggest possible further improvements or development paths.



Chapter 1

Description of the model

“Come on, gentlemen, why shouldn’t we get rid of all this calm
reasonableness with one good kick, just so as to send all these logarithms
to the devil and be able to live our own lives at our own sweet will?”

— Fëdor Dostoevskij, Notes from the Underground

Bayesian models for clustering can be grouped into two main classes, each
characterized by distinct methodologies and assumptions regarding the underlying
data distribution.

The first class of models assumes data points (or random effects) to be indepen-
dent and identically distributed (i.i.d.) from a mixture density (Bouveyron et al.,
2019) (Grün, 2018) (Böhning, 2007), where each mixture component corresponds
to a cluster with its cluster-specific parameters. In this way, each observation is
assumed to arise from one of the J possible groups which are mixed together in
various proportions. For each unit i = 1, . . . , n, this relationship can be expressed
as

f(yi|π,ϑ⋆
1, . . . ,ϑ

⋆
J) =

J∑
j=1

πjfj(yi|ϑ⋆
j) (1.1)

where yi is the data point corresponding to the i-th observation, π represents the
set of weights satisfying πj ∈ [0, 1] for j = 1, . . . , J and

∑J
j=1 πj = 1, ϑ⋆

j are the
cluster-specific parameters, and fj(·|ϑ⋆

j) denotes the density function of the j-th
cluster (Grazian, 2023).

In this model-based approach, the objective is to estimate the cluster-specific
parameters ϑ⋆

1, . . . ,ϑ
⋆
J and the mixing proportions π1, . . . , πJ . While these esti-

mates can be obtained through algorithmic optimization techniques such as the
Expectation-Maximization (EM) algorithm (McLachlan et al., 2008) (Ng et al.,
2004) which iteratively refines the estimates of the parameters via maximum like-
lihood estimation (MLE), a more natural modelling is provided by the Bayesian
framework. Bayesian mixture models incorporate prior information about the
parameters, facilitating an assessment of uncertainty in the generated clustering
configuration (Wade, 2023). In this context, each parameter is treated as a random
variable with an associated prior distribution. This leads (1.1) to be reformulated

5



6 Chapter 1. Description of the model

into

yi|ci,π,ϑ⋆
1, . . . ,ϑ

⋆
J

iid∼ fci(yi|ϑ⋆
ci
)

c1, . . . , cn ∼ Cat(π1, . . . , πJ)

ϑ⋆
1, . . . ,ϑ

⋆
J

iid∼ F0

π1, . . . , πJ ∼ Dir(γ1, . . . , γJ) (1.2)

where the cluster labels c1, . . . , cn are assigned a multinomial distribution with
probabilities defined by the vector of weights π, the cluster-specific parameters ϑ⋆

j

are assigned a prior distribution F0, and the weights are assigned a Dirichlet distri-
bution characterized by parameters γj which regulate the information incorporated
into the model about prior cluster assignments (Grazian, 2023). The clustering
labels ci, which identify the component of the mixture each unit is associated to,
define the clustering of the units.

However, the Bayesian framework is notably powerful and accommodates more
complex formulations. In fact, for the second class of models, we transition to a
Bayesian non-parametric context wherein an infinite mixture model can be intro-
duced. This model does not necessitate a predetermined number J of components,
leading to a formulation in which the likelihood of each unit is assigned conditioned
to a random parameter, namely

yi|ϑi
ind∼ f(yi|ϑi)

ϑ1, . . . ,ϑn|P
iid∼ P

P ∼ discrete RPM (1.3)

where RPM denotes a random probability measure (Grazian, 2023). The discreteness
of P implies the existence of ties among the parameters ϑ1, . . . ,ϑn which induce a
partition ρn identifiable by units that exhibit identical values of the parameter ϑi.
More precisely, letting ϑ⋆

1, . . . ,ϑ
⋆
K represent the unique values of ϑ1, . . . ,ϑn, the

generic h-cluster can be defined as Sh = {i ∈ {1, . . . , n} : ϑi = ϑ⋆
h}. Therefore, this

second class of models specifies the conditional distribution of data points given a
realization of the partition of the units, and a prior is assigned to this partition by
means of the discreteness of the RPM.

One of the main tools employed in infinite mixture models is the Dirichlet
process (DP) (Ferguson, 1973). This allows for modelling the discrete RPM in
(1.3) as P |α, P0 ∼ DP (α, P0), where P0 is the base distribution and α is the
concentration parameter. The Dirichlet process plays a significant role in Bayesian
nonparametrics in general, but particularly in clustering. Its effectiveness is also
secured by the various implementation possibilities given by the stick-breaking
representation (Teh, 2010), the Pólya urn representation (Blackwell et al., 1973),
and the Chinese restaurant process (CRP) (Aldous, 1985).

Implementing Bayesian models requires the design of Markov Chain Monte
Carlo (MCMC) algorithms, which can often be complex and computationally
intensive. In MCMC algorithms, complicated or impossible analytical calculations
are replaced by simulated approximations (Franzén, 2008) derived from a Markov
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chain that ultimately generates samples from the posterior distribution of the model
parameters, allowing inference on the generated quantities (Gelman et al., 2003)
(Robert et al., 2000). The iterative nature of MCMC, along with the need for
a burn-in period to allow convergence of the chain to its stationary distribution,
implies that considerable computational resources may be needed, particularly for
models with high-dimensional parameter spaces or when working with large-scale
datasets.

In summary, while Bayesian methods offer a robust framework for modelling
uncertainty and incorporating prior knowledge, they also demand substantial
computational effort and expertise in algorithm design to fully realize their potential.

The effectiveness of Bayesian model-based approaches, along with their computa-
tional demands, becomes particularly pronounced when applied to spatio-temporal
datasets. Such data, characterized by observations collected over time and across
various spatial locations, is inherently complex due to the interplay between spatial
and temporal dimensions; a complexity that is further compounded when covariates
are also available.

Recently, the use of Bayesian models for clustering has gained popularity,
especially in the context of spatio-temporal datasets. Bayesian clustering models
facilitate the incorporation of prior information into the model, thereby enhancing
both flexibility of the formulation and interpretability of the results. Over the years,
several models have been proposed in the Bayesian literature. Among them, the
Dependent Random Partition Model (DRPM) (Page et al., 2022) is particularly
relevant for explicitly addressing in its formulation the temporal dependencies
among the partitions. This characteristic allows for a more effective identification of
trends over time, resulting in clusters that evolve in a more gentle and interpretable
way.

Several Bayesian models that establish temporal correlations among sequences
of random probability measures have been developed (Nieto-Barajas et al., 2012)
(Antoniano Villalobos et al., 2015) (Gutiérrez et al., 2016) (Jo et al., 2017) (Kalli
et al., 2018) (De Iorio et al., 2018) (De Iorio et al., 2019) (Caron et al., 2017).
However, these models implement temporal dependence through the atoms or
weights associated with the representation of the discrete RPM. Consequently, the
induced random partitions typically exhibit only weak dependence; even when
the sequence of random probability measures is highly correlated, as there is
no guarantee that correlated parameters will yield strong correlations among the
partitions themselves (Page et al., 2022). Therefore, when the sequence of partitions
is the primary inferential object of interest, it is essential to model these partitions
directly rather than relying on induced random partition models as seen in equation
(1.3).

We now examine how (Page et al., 2022) modelled the temporal dependence
within the sequence of partitions, which will lead to the formulation of the Dependent
Random Partition Model presented in (1.8). First, we define the notation employed
throughout this work. We consider a spatio-temporal context where there are n
units to be clustered at all time points t = 1, . . . , T . Each unit is represented as
i = 1, . . . , n. We denote by ρt = {S1t, . . . , Sktt} the partition at time t of the n
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experimental units, composed by kt clusters. An alternative representation of this
partition is possible through cluster labels ct = {c1t, . . . , cnt}, with cit = j indicating
that unit i belongs to cluster Sjt. Finally, we will denote with a ⋆ superscript all
the variables or quantities which are cluster-specific.

Introducing temporal dependence in a collection of partitions requires the
formulation of a joint probability model for (ρ1, . . . , ρT ), denoted as P (ρ1, . . . , ρT ).
Temporal dependence among the ρt’s implies that the cluster configuration in ρt
may be influenced by the cluster configurations found in ρt−1, ρt−2, . . . , ρ1. However,
this principle is too complex and general to be modelled efficiently; therefore
(Page et al., 2022) restricted this temporal connection to a first-order Markovian
structure. Specifically, the conditional distribution of ρt given all the predecessors
ρt−1, ρt−2, . . . , ρ1 actually depends only on ρt−1. This led to the construction of the
joint probability model for (ρ1, . . . , ρT ) as

P (ρ1, . . . , ρT ) = P (ρT |ρT−1) · · ·P (ρ2|ρ1)P (ρ1) (1.4)

Here, P (ρ1) is an exchangeable partition probability function (EPPF), which
describes how the n experimental units at time period 1 are grouped into k1 distinct
clusters. A commonly encountered EPPF is that induced by a Dirichlet process,
implemented by (Page et al., 2022) through a Chinese restaurant process (CRP)
(De Blasi et al., 2015). The EPPF used is given by the following product partition
model (PPM) structure

P (ρ1|M) ∝
k1∏
j=1

M · (|Sj1| − 1)! (1.5)

where k1 denotes the number of clusters in ρ1, |Sj1| is the cardinality of cluster Sj1,
and M is a concentration parameter that controls the number of clusters. Sections
1.2 and 1.3 will detail how this EPPF can be adapted to incorporate spatial and
covariates information.

To characterize the other terms P (ρt|ρt−1) in (1.4) (whose derivation will be
detailed in Section 1.1), the following auxiliary variables need to be introduced to
explicitly model how ρt−1 influences ρt. For all units i = 1, . . . , n we define

γit =

{
1 if unit i is not reallocated when moving from time t− 1 to t

0 otherwise (namely, the unit is reallocated)
(1.6)

These parameters model the similarity between ρt−1 and ρt. If the partitions ρt−1

and ρt are highly dependent, their cluster configurations will change minimally,
resulting in only a few of the n experimental units changing their cluster assignments.
Conversely, partitions exhibiting low dependence will likely manifest significantly
different cluster configurations, leading to a majority of the units being reallocated.

By construction, we set γi1 = 0 for all i, meaning that at the first time instant all
units will get reallocated since there is no partition at time t = 0. (Page et al., 2022)
assume γit

ind∼ Ber(αt) where αt ∈ [0, 1] serves as a temporal dependence parameter.
At one extreme, αt = 1 denotes perfect temporal dependence, with ρt = ρt−1;
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conversely, αt = 0 implies full independence of ρt from ρt−1. The parameter αt can
be either global (denoted as α), or specific to time and/or unit (represented as αt,
αi, or αit). For clarity, the vector γt = (γ1t, . . . , γnt) is introduced, so that the T
pairs of parameters (γj, ρj) are explicitly reported in the augmented formulation of
the joint model (1.4), which becomes

P (γ1, ρ1, . . . ,γT , ρT ) = P (ρT |γT , ρT−1)P (γT ) · · ·P (ρ2|γ2, ρ1)P (γ2)P (ρ1) (1.7)

Once the partition model is specified, there is considerable flexibility in how
to define the remainder of the Bayesian model. To facilitate the propagation of
temporal dependence throughout the model, an autoregressive AR(1) component is
incorporated at both the data level and the cluster-specific parameter level. This
approach led (Page et al., 2022) to the model formulation presented in (1.8),

Yit|Yit−1,µ
⋆
t ,σ

2⋆
t ,η, ct

ind∼ N (µ⋆
citt

+ η1iYit−1, σ
2⋆
citt

(1− η21i))

Yi1
ind∼ N (µ⋆

ci11
, σ2⋆

ci11
)

ξi = Logit(1
2
(η1i + 1))

ind∼ Laplace(a, b)

(µ⋆
jt, σ

⋆
jt)

ind∼ N (ϑt, τ
2
t )× U(0, Aσ)

ϑt|ϑt−1
ind∼ N ((1− φ1)φ0 + φ1ϑt−1, λ

2(1− φ2
1))

(ϑ1, τt)
iid∼ N (φ0, λ

2)× U(0, Aτ )

(φ0, φ1, λ) ∼ N (m0, s
2
0)× U(−1, 1)× U(0, Aλ)

{ct, . . . , cT} ∼ tRPM(α,M) with αt
iid∼ Beta(aα, bα) (1.8)

where Yit denotes the response variable measured at the i-th unit at time t, N denotes
the normal distribution, U denotes the uniform distribution, and tRPM(α,M)
represents the temporal random partition model (1.7) parametrised by α1, . . . , αT

and the EPPF in (1.5). The choice of modelling η1i through the transformation of a
Laplace(a, b) distribution implies less heavy tails around the boundaries of −1 and
1, thus favouring less extreme values. This choice mitigates the risk of temporal
dynamics overwhelming the likelihood information, as the influence of the term
η1iYit−1 could cover up the contributions from the cluster-specific parameter µ⋆

citt

and, in our updated formulation, from the regression term xT
itβt. Lastly, the ϑt

parameter serves as a temporal anchor for the cluster-specific means µ⋆
jt, ensuring

that these means are not completely independent over time but instead exhibit a
regular and interpretable progression.

Our generalization of the original DRPM is presented in (1.9), with a visual
representation provided in Figure 1.1. Changes and additions that differ from the
original model (1.8) are highlighted in dark red.

Yit|Yit−1,µ
⋆
t ,σ

2⋆
t ,η, ct

ind∼ N (µ⋆
citt

+ η1iYit−1 + xT
itβt, σ

2⋆
citt

(1− η21i))

Yi1
ind∼ N (µ⋆

ci11
+ xT

i1β1, σ
2⋆
ci11

)

βt
ind∼ Np(b, s

2I)

ξi = Logit(1
2
(η1i + 1))

ind∼ Laplace(a, b)
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(µ⋆
jt, σ

2⋆
jt )

ind∼ N (ϑt, τ
2
t )× invGamma(aσ, bσ)

ϑt|ϑt−1
ind∼ N ((1− φ1)φ0 + φ1ϑt−1, λ

2(1− φ2
1))

(ϑ1, τ
2
t )

iid∼ N (φ0, λ
2)× invGamma(aτ , bτ )

(φ0, φ1, λ
2) ∼ N (m0, s

2
0)× U(−1, 1)× invGamma(aλ, bλ)

{ct, . . . , cT} ∼ tRPM(α,M) with αt
iid∼ Beta(aα, bα) (1.9)

In our updated formulation, we opted to model the variances σ2⋆
jt , τ 2t , and λ2

using an inverse gamma distribution instead of the uniform distribution employed
originally by (Page et al., 2022). This choice is more sophisticated, as tuning the
parameters of an invGamma(a, b) distribution is more complex than simply setting
bounds of a U(l, u). However, our choice should ensure better mixing in the Markov
chain. In fact, as will be derived in Section 1.1, the inverse gamma distributions
recover conjugacy within the model, allowing for variance updates to be performed
using an analytically exact sampling rather than relying on the acceptance-rejection
method of Metropolis algorithm.

Moreover, we introduced a regression parameter βt in the likelihood, to improve
accuracy in the fitted estimates of the target variable. We chose to make this
parameter only time-dependent, rather than also unit-dependent, to simplify what
is already a quite complex formulation.

Yit ∼ N (µ⋆
citt

+ η1iYit−1 + xT
itβt, σ

2⋆
citt

(1− η21i))
Yi1 ∼ N (µ⋆

ci11
+ xT

i1β1, σ
2⋆
ci11

)

ξi = Logit(1
2
(η1i + 1)) ∼ Laplace(a, b)

σ2⋆
jt ∼ invGamma(aσ, bσ) βt ∼ Np(b, s

2I)

µ⋆
jt ∼ N (ϑt, τ

2
t )

τ 2t ∼ invGamma(aτ , bτ )
ϑt ∼ N ((1− φ1)φ0 + φ1ϑt−1, λ

2(1− φ2
1))

ϑ1 ∼ N (φ0, λ
2)

α(it) ∼ Beta(aα(i), bα(i))
γit

ind∼ Ber(α(it))

φ0 ∼ N (m0, s
2
0) φ1 ∼ U(−1, 1) λ2 ∼ invGamma(aλ, bλ)

Figure 1.1: Graph visualization of our generalized DRPM formulation, with highlighted in dark
red the changes that we made to the original formulation and in gray the internal variables of the
model.



1.1. MCMC algorithm 11

We will now dive deeper into the characteristics of the original DRPM formula-
tion by outlining its associated MCMC algorithm. Subsequently, we will describe
how the prior distribution for the partitions ρ1, . . . , ρT can be augmented with spa-
tial information and, in our generalized model, with covariates, through dedicated
cohesions functions and similarities functions respectively. Additionally, we will
examine the behaviour of the cohesion and similarity functions proposed in the
literature and implemented in our generalized model by conducting experiments
using a test case partition.

For the sake of clarity, throughout this work we will refer to CDRPM for the
original model formulation by (Page et al., 2022), and to JDRPM for our updated
version. The letters C and J denote the programming languages used to implement
their corresponding MCMC algorithms: C for the former, Julia for the latter.

1.1 MCMC algorithm

We now detail the MCMC algorithm developed by (Page et al., 2022), which is
necessary for sampling from the posterior distributions implied by model (1.8). The
MCMC algorithm associated to our generalized model (1.9) required only minor
adjustments to the original structure.

To develop the MCMC algorithm, the iterative structure of (1.7) suggests the
use of a Gibbs sampler (Geman et al., 1984) (Tanner et al., 1987), where γt and
ρt are updated sequentially. The Markovian assumption reduces computational
costs as we only need to consider ρt−1 and ρt+1 when updating ρt. To perform
this update, the terms P (ρ1) and P (ρt|ρt−1) of (1.7) need to be clarified. While
P (ρ1) is defined by (1.5), the derivation of P (ρt|ρt−1) necessitates the concept of
compatibility.

Definition 1.1 (compatibility). Two partitions ρt and ρt−1 are said to be compatible
with respect to γt if ρt can be obtained from ρt−1 by reallocating items as indicated
by γt; that is, by moving the units i for which γit = 0.

To perform this compatibility check, it suffices to ensure that the reduced
partitions from ρt and ρt−1 are identical. Here, “reduced” refers to the restriction of
partitions ρt and ρt−1 to the units that cannot move. Indeed, if these fixed units
are clustered in the same way, then the free movers from ρt can be assigned labels
to match the ones assigned in ρt−1. Denoting the set of fixed units at time t as
Rt = {i : γit = 1}, this check translates into verifying that ρRt

t = ρRt
t−1.

This compatibility must be verified during the update steps of parameters γit
and cluster labels cit to ensure that the new sampled draws remain valid and
coherent across all partitions and parameters involved. For instance, when updating
γit during each iteration d of the algorithm, potential issues arise when transitioning
from γ

(d−1)
it = 0 to γ

(d)
it = 1. This transition indicates that a unit i previously

free to be reassigned (according to the parameters from the previous iteration) is
now deemed to stay fixed in her cluster. However, this change may conflict with
the current sampled values of partitions ρ

(d)
t−1 and ρ

(d−1)
t . Therefore, compatibility
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between their reductions to the units in the set Rt ∪ {i} needs to be checked. If
this check fails, the tentative update γ

(d−1)
it = 0 → γ

(d)
it = 1 is disallowed, and we

enforce γ
(d)
it = 0 in the sampling algorithm.

Similar checks are conducted when updating ρt. In this step, only units that
can actually move, i.e. units with γit = 0, are updated, and therefore there are no
compatibility issues between ρt−1 and ρt. However, since the update of γit occurs
prior to the update of the partition, compatibility must be verified between ρt and
ρt+1. Further details on this updating constraints can be found in the supplementary
material of (Page et al., 2022).

Once this compatibility concept is introduced, we can finally derive P (ρt|ρt−1).
Let P denote the set of all partitions of the n units and PCt = {ρt ∈ P : ρRt

t−1 = ρRt
t }

the collection of partitions at time t that are compatible with ρt−1 based on γt.
Then, by construction, we find that P (ρt|ρt−1) is a random partition distribution
with support PCt and density

P (ρt = λ|γt, ρt−1) =
P (ρt = λ)1[λ∈PCt ]∑
λ′ P (ρt = λ′)1[λ′∈PCt ]

While this formulation is not statistically appealing, (Page et al., 2022) proved
that, under the construction outlined thus far, marginally ρ1, . . . , ρT are identically
distributed with law derived from the EPPF used to model ρ1. This result, along
with the previously outlined compatibility analysis, enables the derivation of the
complete update rules rules for γit and cit.

Once the sampling scheme for γit and ρt is established, updating the other
parameters becomes straightforward. Each parameter will be updated using its full
conditional distribution. For most parameters, this distribution is available due
to the conjugacy of their associated priors in the model, while for a few others a
Metropolis step is required (Metropolis et al., 1953).

We now report the update rules for all parameters involved in our generalized
model JDRPM, presented in (1.9), detailing the differences compared to the original
CDRPM formulation (1.8). The derivation of the following full conditionals, with
the extended calculations provided in Appendix A, was theoretically straightforward,
relying on the principle that posterior ∝ likelihood · prior. However, we followed
useful suggestions and tricks from (Duncan, 2016).

• update σ2⋆
jt . This full conditional derivation is characteristic of JDRPM only,

since in CDRPM the variance had a uniform law and was therefore updated
through a Metropolis step.

for t = 1: f(σ2⋆
jt |−) ∝ kernel of a invGamma(aσ(post), bσ(post)) with

aτ(post) = aσ +
|Sjt|
2

bτ(post) = bσ +
1

2

∑
i∈Sjt

(Yit − µ⋆
jt − xT

itβt)
2

for t > 1: f(σ2⋆
jt |−) ∝ kernel of a invGamma(aσ(post), bσ(post)) with



1.1. MCMC algorithm 13

aτ(post) = aσ +
|Sjt|
2

bτ(post) = bσ +
1

2

∑
i∈Sjt

(Yit − µ⋆
jt − η1iYit−1 − xT

itβt)
2

(1.10)

• update µ⋆
jt. The update rule is the same for both JDRPM and CDRPM, and

requires a Gibbs step defined by the following full conditional.

for t = 1: f(µ⋆
jt|−) ∝ kernel of a N (µµ⋆

jt(post), σ
2
µ⋆
jt(post)) with

σ2
µ⋆
jt(post) =

1
1
τ2t

+
|Sjt|
σ2⋆
jt

µµ⋆
jt(post) = σ2

µ⋆
jt(post)

(
ϑt

τ 2t
+

∑
i∈Sjt

(Yi1 − xT
itβt)

σ2⋆
jt

)
for t > 1: f(µ⋆

jt|−) ∝ kernel of a N (µµ⋆
jt(post), σ

2
µ⋆
jt(post)) with

σ2
µ⋆
jt(post) =

1

1
τ2t

+

∑
i∈Sjt

1

1−η2
1i

σ2⋆
jt

µµ⋆
jt(post) = σ2

µ⋆
jt(post)

ϑt

τ 2t
+

∑
i∈Sjt

Yit−η1iYi,t−1−xT
itβt

1−η21i

σ2⋆
jt


(1.11)

• update βt. This full conditional derivation is characteristic of JDRPM only,
since the insertion of a regression term in the likelihood is a feature introduced
by our generalized model.

for t = 1: f(βt|−) ∝ kernel of a N (b(post), A(post)) with

A(post) =

(
1

s2
I +

n∑
i=1

xitx
T
it

σ2⋆
citt

)−1

b(post) = A(post)

(
b

s2
+

n∑
i=1

(Yit − µ⋆
citt

)xit

σ2⋆
citt

)
i.e. f(βt|−) ∝ kernel of a NCanon(h(post), J(post)) with

h(post) =

(
b

s2
+

n∑
i=1

(Yit − µ⋆
citt

)xit

σ2⋆
citt

)
J(post) =

(
1

s2
I +

n∑
i=1

xitx
T
it

σ2⋆
citt

)
for t > 1: f(βt|−) ∝ kernel of a N (b(post), A(post)) with

A(post) =

(
1

s2
I +

n∑
i=1

xitx
T
it

σ2⋆
citt

)−1

b(post) = A(post)

(
b

s2
+

n∑
i=1

(Yit − µ⋆
citt

− η1iYit−1)xit

σ2⋆
citt

)
i.e. f(βt|−) ∝ kernel of a NCanon(h(post), J(post)) with

h(post) =

(
b

s2
+

n∑
i=1

(Yit − µ⋆
citt

− η1iYit−1)xit

σ2⋆
citt

)
J(post) =

(
1

s2
I +

n∑
i=1

xitx
T
it

σ2⋆
citt

)
(1.12)

Here NCanon(h, J) is the canonical formulation of the N (µ,Σ), with h =
Σ−1µ and J = Σ−1. This other distribution facilitates the sampling, since
these full conditional computations allow to derive directly the parameters
of the canonical one, e.g. the inverse of the variance matrix rather than the
variance matrix itself; and therefore sampling through it does not require
any inversion of matrices which would produce more computational load,
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numerical instabilities, and loss of accuracy. As a consequence, in Julia we can
write rand(MvNormalCanon(h_star, J_star)) rather than the riskier one
rand(MvNormal(inv(J_star)*h_star, inv(J_star))); which apart from
the previously mentioned disadvantages would be a statistically equivalent
form.

• update η1i. The update rule is the same for both JDRPM and CDRPM, and
requires a Metropolis step.

• update τ 2t . This full conditional derivation is characteristic of JDRPM only,
since in CDRPM the variance had a uniform law and was therefore updated
through a Metropolis step.

f(τ 2t |−) ∝ kernel of a invGamma(aτ(post), bτ(post)) with

aτ(post) =
kt
2
+ aτ bτ(post) =

∑kt
j=1(µ

⋆
jt − ϑt)

2

2
+ bτ (1.13)

• update ϑt. The update rule is the same for both JDRPM and CDRPM, and
requires a Gibbs step defined by the following full conditional.

for t = T : f(ϑt|−) ∝ kernel of a N (µϑt(post), σ
2
ϑt(post)) with

σ2
ϑt(post) =

1
1

λ2(1−φ2
1)
+ kt

τ2t

µϑt(post) = σ2
ϑt(post)

(∑kt
j=1 µ

⋆
jt

τ 2t
+

(1− φ1)φ0 + φ1ϑt−1

λ2(1− φ2
1)

)
for 1 < t < T : f(ϑt|−) ∝ kernel of a N (µϑt(post), σ

2
ϑt(post)) with

σ2
ϑt(post) =

1
1+φ2

1

λ2(1−φ2
1)
+ kt

τ2t

µϑt(post) = σ2
ϑt(post)

(∑kt
j=1 µ

⋆
jt

τ 2t
+

φ1(ϑt−1 + ϑt+1) + φ0(1− φ1)
2

λ2(1− φ2
1)

)
for t = 1: f(ϑt|−) ∝ kernel of a N (µϑt(post), σ

2
ϑt(post)) with

σ2
ϑt(post) =

1
1
λ2 +

φ2
1

λ2(1−φ2
1)
+ kt

τ2t

µϑt(post) = σ2
ϑt(post)

(
φ0

λ2
+

φ1(ϑt+1 − (1− φ1)φ0)

λ2(1− φ2
1)

+

∑kt
j=1 µ

⋆
jt

τ 2t

)
(1.14)

• update φ0. The update rule is also the same for both JDRPM and CDRPM,
and requires a Gibbs step defined by the following full conditional.

f(φ0|−) ∝ kernel of a N (µφ0(post), σ
2
φ0(post)) with

σ2
φ0(post) =

1
1
s20
+ 1

λ2 +
(T−1)(1−φ1)2

λ2(1−φ2
1)
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µφ0(post) = σ2
φ0(post)

(
m0

s20
+

ϑ1

λ2
+

1− φ1

λ2(1− φ2
1)

T∑
t=2

(ϑt − φ1ϑt−1)

)
(1.15)

• update λ2. This full conditional derivation is characteristic of JDRPM only,
since in CDRPM the variance had a uniform law and was therefore updated
through a Metropolis step.

f(λ2|−) ∝ kernel of a invGamma(aλ(post), bλ(post)) with

aλ(post) =
T

2
+ aλ

bλ(post) =
(ϑ1 − φ0)

2

2
+

T∑
t=2

(ϑt − (1− φ1)φ0 − φ1ϑt−1)
2

2
+ bλ (1.16)

• update α. The update rule is the same for both JDRPM and CDRPM, and
requires a Gibbs step defined by the following full conditional.

if global α: f(α|−) ∝ kernel of a Beta(aα(post), bα(post)) with

aα(post) = aα +
n∑

i=1

T∑
t=1

γit bα(post) = bα + nT −
n∑

i=1

T∑
t=1

γit

if time specific α: f(αt|−) ∝ kernel of a Beta(aα(post), bα(post)) with

aα(post) = aα +
n∑

i=1

γit bα(post) = bα + n−
n∑

i=1

γit

if unit specific α: f(αi|−) ∝ kernel of a Beta(aα(post), bα(post)) with

aα(post) = aαi +
T∑
t=1

γit bα(post) = bαi + T −
T∑
t=1

γit

if time and unit specific α: f(αit|−) ∝ kernel of a Beta(aα(post), bα(post)) with
aα(post) = aαi + γit bα(post) = bαi + 1− γit (1.17)

• update a missing observation Yit. This full conditional derivation is character-
istic of JDRPM only, since the handling of missing data feature introduced
by our generalized model. Experiments conducted in Sections 3.2.2 and 3.3.1
will confirm the correctness of this derivation.

for t = 1: f(Yit|−) ∝ N (µYit(post), σ
2
Yit(post)) with

σ2
Yit(post) =

1

1
σ2⋆
citt

+
η21i

2σ2⋆
cit+1t+1(1−η21i)

µYit(post) = σ2
Yit(post)

(
µ⋆
citt

+ xT
itβt

σ2⋆
citt

+
η1i(Yit+1 − µ⋆

cit+1t+1 − xT
it+1βt+1)

σ2⋆
cit+1t+1(1− η21i)

)
for 1 < t < T : f(Yit|−) ∝ N (µYit(post), σ

2
Yit(post)) with

σ2
Yit(post) =

1− η21i
1

σ2⋆
citt

+
η21i

σ2⋆
cit+1t+1
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µYit(post) = σ2
Yit(post)

(
µ⋆
citt

+ η1iYit−1 + xT
itβt

σ2⋆
citt(1− η21i)

+
η1i(Yit+1 − µ⋆

cit+1t+1 − xT
it+1βt+1)

σ2⋆
cit+1t+1(1− η21i)

)
for t = T : f(Yit|−) is just the likelihood of Yit (1.18)

• update φ1. The update rule is the same for both JDRPM and CDRPM, and
requires a Metropolis step.

Finally, in Algorithm 1 we provide a brief outline of the steps involved in the
MCMC sampling algorithm for our generalized model. The computation of the
LPML and WAIC metrics follows established methodologies from (Christensen
et al., 2010) and (Gelman et al., 2013)

The core of the clustering process, as we described, involves updating γit and ρt.
Their update step is inherently complex, as it necessitates checking for compatibility
issues. The approach entails simulating the assignment of each unit i, currently
belonging to cluster j, to either one of the existing clusters or to a new singleton
cluster. For each scenario, we compute the probability of this assignment to occur,
from which we derive weights to inform the sampling decision for the next iteration.
Key elements influencing the definition of these weights include spatial cohesions
and, in our JDRPM updated formulation, covariates similarities. We will now
explore both these functions.

1.2 Spatial cohesions

Based on our generic joint probability model of (1.7), it is straightforward to
incorporate additional information into the partition model such as space or covari-
ates. The incorporation of spatial information can be effectively accommodated
through the EPPF in our framework, resulting in spatially informed clusters that
evolve over time (Page et al., 2022).

To introduce this extension, let si denote the spatial coordinates of the i-th
(noting that these coordinates do not change over time), and let s⋆jt denote the
subset of spatial coordinates of the units belonging to cluster Sjt. Then, we can
express the EPPF for the t-th partition in the following product form

P (ρt|M,S) ∝
kt∏
j=1

C(Sjt, s
⋆
jt|M,S) (1.19)

Compared to the original formulation of (1.5), where P (ρt|M) ∝
∏kt

j=1 c(Sjt|M),
(1.19) incorporates a spatial component into the partition weights through the
spatial cohesion function C(Sjt, s

⋆
jt|M,S). The original term c(Sjt|M) describes

how units inside cluster Sjt are likely to be clustered together a priori, while the
cohesion function C(Sjt, s

⋆
jt|M,S), parametrised by a set of parameters S, measures

the compactness of the spatial coordinates s⋆jt.

With these two functions established, we transition to a spatially informed
dependent random partition model, so that in models (1.8) and (1.9) we can
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Algorithm 1: Pseudocode for the MCMC fitting algorithm of our gener-
alized model (1.9).
1 for d = 1, . . . , draws do
2 if target variable has missing values then
3 update the missing Yit’s using (1.18)
4 end
5 for t = 1, . . . , T do
6 for i = 1, . . . , n do
7 if t = 1 then
8 γit = 0
9 else

10 update γit
11 end
12 end
13 for i ∈ {ξ : γξt = 0} do
14 // the loop only updates the units which can be

reallocated
15 update cit (i.e. update ρt)
16 end
17 update µ⋆

jt using (1.11)
18 update σ2⋆

jt using (1.10)
19 if are there covariates in the likelihood then
20 update βt using (1.12)
21 end
22 update ϑt using (1.14)
23 update τ 2t using (1.13)
24 end
25 if update_eta = true then
26 update η1i using Metropolis sampling
27 end
28 if update_alpha = true then
29 update α using (1.17)
30 end
31 update φ0 using (1.15)
32 if update_phi1 = true then
33 update φ1 using Metropolis sampling
34 end
35 update λ2 using (1.16)
36 if d > burnin and d % thin = 0 then
37 save MCMC current iterate
38 end
39 end
40 compute LPML and WAIC metrics
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replace tRPM(α,M) with stRPM(α,M,S) to denote our spatio-temporal random
partition model (1.7) parametrised by α1, . . . , αT and the EPPF in (1.19).

In this section, we will present the different cohesions functions available in both
CDRPM and JDRPM implementations. We will discuss their definition and conduct
experiments on each cohesion function, to observe how their tuning parameters
influence the computed values. For these experiments, we will consider the clusters
configuration illustrated in Figure 1.2, which represents the spatial coordinates
of the units of the spatio-temporal dataset that will be used in Chapter 3. For
visualization purposes, these values will be presented in a log-transformed form to
better highlight differences among the weights assigned to each cluster. Moreover,
for clarity, we will use the notation Sh to refer to a generic h-th cluster, rather
than the more precise notation Sjt, as we now focus on analysing the behaviour of
spatial cohesions.

The underlying idea of the following formulas is to favour few spatially connected
clusters rather than numerous singleton clusters, thereby yielding more interpretable
and meaningful results. In fact, all formulations employ the term M · Γ(|Sh|) which
is used to encourage a small number of large clusters (Page et al., 2016) and was
employed in the original EPPF formulation of (1.5). The parameter M regulates
the number of clusters, as from literature it is known that the expected number
of clusters a priori of n units under the DP induced probability distribution on
partitions is approximately M log

(
M+n
M

)
(Page et al., 2016). However, when this

term is coupled with other distance penalties, as in the following cases, it becomes
unclear how the number of expected clusters a priori grows as a function of M . In
our analysis, we considered M = 1.

Figure 1.2: Partition considered for the spatial cohesion analysis.
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C1(Sh, s
⋆
h) =


M · Γ(|Sh|)

Γ(αDh)1[Dh≥1] +Dh1[Dh<1]

if |Sh| > 1

M if |Sh| = 1

(1.20)

The first cohesion function (Denison et al., 2001) considers Dh =
∑

i∈Sh
∥si − s̄h∥

as the total distance from the units to the cluster centroid s̄h. The definition of
this cohesion is an adjustment of a decreasing function in terms of Dh to assign
higher weights to denser clusters, i.e., those with lower values of Dh. The additional
parameter α provides control on the level of penalization.

C2(Sh, s
⋆
h) = M · Γ(|Sh|) ·

∏
i,j∈Sh

1[∥si−sj∥≤a] (1.21)

The second cohesion function (Page et al., 2016) establishes a hard cluster boundary,
assigning a weight of 1 only if all distances between every possible pair of points
within the cluster are below the threshold parameter a, i.e. if all units are “close
enough” to each other. If even a single pair of points does not meet this criterion,
the returned value is 0, reflecting the maximum penalization. The strictness of this
requirement can be adjusted through the parameter a.

However, C1 and C2 do not preserve the exchangeability property. This means
that marginalizing the random partition model over the last of m units does not
yield the same model as if only m−1 units were considered. This coherence property,
known as sample size consistency or addition rule (De Blasi et al., 2015), is often
desirable for theoretical or computational purposes. Therefore, the following two
cohesion functions are able to provide such property.

C3(Sh, s
⋆
h) = M · Γ(|Sh|) ·

∫ ∏
i∈Sh

q(si|ξh)q(ξh) dξh (1.22)

Cohesion 3 (Müller et al., 2011), referred to as auxiliary similarity function, treats
spatial the spatial coordinates si as if they were random variables, applying on
them a model such as the Normal/Normal-Inverse-Wishart, where ξ = (m, V ),
s|ξ ∼ N (m, V ) and ξ ∼ NIW(µ0, κ0, ν0,Λ0). This cohesion function assigns a
larger weight to clusters that yield larger marginal likelihood values, i.e. clusters
which the random model considers more likely to occur.

C4(Sh, s
⋆
h) = M · Γ(|Sh|) ·

∫ ∏
i∈Sh

q(si|ξh)q(ξh|s⋆h) dξh (1.23)

Cohesion 4 (Quintana et al., 2015), referred to as double dipper cohesion, employs
the posterior predictive distribution rather than the prior predictive distribution
used in cohesion 3.

C5(Sh, s
⋆
h) = M · Γ(|Sh|) · exp

{
−φ

∑
i∈Sh

∥si − s̄h∥

}
(1.24)
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C6(Sh, s
⋆
h) = M · Γ(|Sh|) · exp

{
−φ log

(∑
i∈Sh

∥si − s̄h∥

)}
(1.25)

The final two cohesions derive from the cluster variance/entropy similarity function
(Page et al., 2018), a very general methodology to measure the closeness of a set of
values which in fact will come back in the covariates similarities. Similar to cohesion
1, both C5 and C6 employ a summary metric that quantifies the the closeness of
the spatial coordinates s⋆h by summing the distances of the units from the cluster
centroid s̄h. The parameter φ controls the degree to which dissimilar values are
penalized.

All these cohesion functions appeared to agree on the ranking of the clusters
shown in Figure 1.2. Cohesion 3 and 4, corresponding to Figures 1.5 and 1.6, clearly
indicate the order of clusters as orange, green, purple, and blue, sorted from highest
to lowest cohesion weight. This ranking is also reflected in the results of the other
cohesions; however, different evaluations can emerge by adjusting their associated
tuning parameters. For instance, Figures 1.3, 1.7, and 1.8, corresponding to C1,
C5 and C6, show how the singleton (purple) cluster tends to receive the highest
weight as the penalization parameters increase. In contrast, cohesion 2, illustrated
in Figure 1.4, ranks the singleton cluster at the top, followed by the green cluster,
being the first among the non-singletons that activates C2 when increasing its
threshold parameter a, and lastly by clusters orange and blue.

1.3 Covariates similarities

The incorporation of covariates information, a characteristic feature of our
generalized model, can be integrated into the EPPF (1.19) in a similar way to
that used for the spatial information. To introduce this extension, let X⋆

jt denote
the p× |Sjt| matrix that contains the covariates of the units belonging to cluster
Sjt, i.e. X⋆

jt = {x⋆
it = (xit1, . . . , xitp)

T : i ∈ Sjt}. In the current implementation of
JDRPM we chose to treat each covariate individually. Therefore, the new term in
the definition of the EPPF for P (ρt) will be a function of the vector x⋆

jtr that collects
the values of the r-th covariate for the units inside cluster Sjt, i.e. row r of matrix
X⋆

jt. Then, each contribution of the covariates will be considered independently,
leading to an EPPF in the form

P (ρt|M,S, C) ∝
kt∏
j=1

C(Sjt, s
⋆
jt|M,S)

(
p∏

r=1

g(Sjt,x
⋆
jtr|C)

)
(1.26)

This approach is convenient as it can seamlessly accommodate numerical and
categorical covariates. Nonetheless, a unified and multidimensional treatment of
the covariates would be possible, with appropriate adjustments to the similarity
functions, and would yield an EPPF in the form

P (ρt|M,S, C) ∝
kt∏
j=1

C(Sjt, s
⋆
jt|M,S)g(Sjt, X

⋆
jt|C) (1.27)
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Figure 1.3: Cohesion 1 log-transformed values computed on the test case partition of Figure 1.2,
with respect to different values of its tuning parameter α.

Figure 1.4: Cohesion 2 values computed on the test case partition of Figure 1.2, with respect
to different values of its tuning parameter a. The term M · Γ(|Sh|) was ignored to highlight the
boundary effect which this cohesion provides.

Figure 1.5: Cohesion 3 log-transformed values computed on the test case partition of Figure 1.2,
with respect to different values of its tuning parameter ν0.
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Figure 1.6: Cohesion 4 log-transformed values computed on the test case partition of Figure 1.2,
with respect to different values of its tuning parameter ν0.

Figure 1.7: Cohesion 5 log-transformed values computed on the test case partition of Figure 1.2,
with respect to different values of its tuning parameter φ.

Figure 1.8: Cohesion 6 log-transformed values computed on the test case partition of Figure 1.2,
with respect to different values of its tuning parameter φ.
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We therefore transition to a spatially and covariates-informed dependent ran-
dom partition model, so that in model (1.9) we can replace tRPM(α,M) with
stRPMx(α,M,S, C) to denote our spatio-temporal covariates-informed random
partition model (1.7) parametrised by α1, . . . , αT and the EPPF defined in (1.26).

As in the previous section, we will now present the covariates similarity functions
implemented in JDRPM, discussing their definition and conducting experiments
on each function. These experiments refer to the test case partition illustrated
in Figure 1.9, which considers the Altitude covariate from the spatio-temporal
dataset that will be used in Chapter 3. For consistency, we will again employ a
simplified notation by omitting spatio-temporal indicators.

Figure 1.9: Partition considered for the covariates similarity analysis.

The first similarity is the cluster variance/entropy similarity function (Page
et al., 2018) which is suitable for both numerical and categorical covariates.

g1(Sh,x
⋆
h) = exp {−φH(Sh,x

⋆
h)} (1.28)

Here, H(Sh,x
⋆
h) =

∑
i∈Sh

(xi − x̄h)
2 for numerical covariates, where x̄h is the

mean value of the vector x⋆
h, while H(Sh,x

⋆
h) = −

∑
C
c=1 p̂c log(p̂c) for categorical

covariates, with p̂c denoting the relative frequency at which each category appears.
The parameter φ controls the degree of penalization applied to dissimilar values.
This similarity function can be easily extended to the multidimensional case, for
numerical covariates, with the H function becoming H(Sh, X

⋆
h) =

∑p
r=1 ∥xr − x̄h∥2.

Another commonly used similarity function is the Gower similarity (Gower,
1971). The core idea behind this function is to compare all cluster-specific pair-wise
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similarities, leading to the total Gower similarity function.

g2(Sh,x
⋆
h) = exp

{
−α

∑
i,j∈Sh, i ̸=j

d(xi, xj)

}
(1.29)

However, this function g2 is strictly increasing with respect to cluster size, which
tends to promote a large number of small clusters (Page et al., 2018). To address
this issue, a correction can be applied that accounts for the size of the cluster Sh,
leading to the average Gower similarity function.

g3(Sh,x
⋆
h) = exp

{
− 2α

|Sh|(|Sh| − 1)

∑
i,j∈Sh, i ̸=j

d(xi, xj)

}
(1.30)

In both functions, d(xi, xj) represents the Gower dissimilarity between xi and
xj. For numerical covariates, it is defined as d(xi, xj) = |xi − xj|/R, where R =
max(x) − min(x) denotes the range of the covariate values across all units; for
categorical covariates, it is defined as d(xi, xj) = 1[xi ̸=xj ]. As a dissimilarity metric,
values closer to 0 indicate similar data points, while values closer to 1 indicate
similar data; therefore the negative sign in the exponents of g2 and g3 converts these
functions into measures of similarity. These similarity functions can be naturally
extended to the multivariate context, resulting in g2(Sh, X

⋆
h) and g2(Sh, X

⋆
h). In this

case, the comparison is performed on vectors of covariates, rather than individual
values, through the function d becoming d(xi,xj) =

1
p

∑p
r=1 d(xir, xjr).

g4(Sh,x
⋆
h) =

∫ ∏
i∈Sh

q(xi|ξh)q(ξh) dξh (1.31)

The final similarity function (Page et al., 2016), referred to as auxiliary similarity
function, employs a similar approach to that used in spatial cohesion 3 by treating
covariates as if they were random variables. However, in this unidimensional
setting, we choose a Normal/Normal-Inverse-Gamma model with parameters ξ =
(µ, σ2), x|ξ ∼ N (µ0, σ

2), and µ ∼ N (µ0, σ
2/λ0), σ2 ∼ invGamma(a0, b0), i.e.

ξ ∼ N invGamma(µ0, λ0, a0, b0). Nonetheless, a multivariate extension is possible
through the same Normal/Normal-Inverse-Wishart model employed for the spatial
coordinates.

All these similarity functions appeared to agree on the ranking of the clusters
shown in Figure 1.9. The purple cluster, the singleton, consistently ranked at
the top across all similarity functions, with the exception of certain parameter
combinations in g4. All the similarities, except for g2, agreed on the classification
of non-singleton clusters, with red exhibiting the highest similarity, followed by
orange, blue, and green. This is illustrated in Figures 1.10, 1.12, which corresponds
to functions g1 and g3, as well as in Figures 1.13 through 1.15, corresponding to g4.
In contrast, Figure 1.11 shows that similarity 2 ranks the green and red clusters at
the top, followed by blue and orange. This classification is intriguing because the
green cluster appeared relatively sparse according to Figure 1.9, yet it captured all
“outlier” values, thereby justifying an high similarity score. Notably, similarities 2
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and 4 seem to be the only functions able to assign substantial weight to the green
partition.

Other experiments were also conducted on different covariates and clusters con-
figurations. Similarity 4 exhibited significant flexibility in computing the similarity
weights by adjusting the parameters that govern the inverse gamma distribution
for σ2. This was also evident by Figures 1.13 through 1.15, from the experiments
on the Altitude covariate, where different parameters a0 and b0 led g4 to various
possible rankings in the clusters. This flexibility suggests that covariates should
be standardized prior to their use, to simplify the analysis and ensure a consistent
selection of the most appropriate set of parameters. In any case, the JDRPM
implementation is not rigid in this regard as it allows for separate assignments of
parameters a0 and b0 for each covariate included in the prior.

In contrast, similarity 1 proved to be the most predictable function, consistently
yielding reasonable cluster rankings across all experiments. For instance, Figure
1.10 shows how g1 proposed the ranking red, orange, blue and green, which are
intuitively valid by looking at the configuration of Figure 1.9. However, g1 tends to
penalize a lot sparse clusters, suggesting that alternative distance metrics, rather
than the L2 norm, could be employed in the computation of H(Sh,x

⋆
h).

Lastly, in Table 1.1 we present a brief exemplification of the behaviour of these
similarity functions with categorical covariates. Similarity 4 is not included as it
applies only to numerical covariates.

Table 1.1: Values of the three similarity functions which can be applied to categorical covariates,
computed on a string of 20 characters composed by letters A and B, with the numbers next to
each letter indicating their frequency. The tuning parameters φ of g1 and α of g2 and g3 were set
to 1.

x⋆
h Similarity 1 Similarity 2 Similarity 3

10 A, 10 B 0.5 3.7201e-44 0.5908
11 A, 9 B 0.5025 1.0112e-43 0.5939
12 A, 8 B 0.5102 2.0311e-42 0.6033
13 A, 7 B 0.5234 3.0144e-40 0.6194
14 A, 6 B 0.5429 3.3057e-37 0.6427
15 A, 5 B 0.5699 2.6786e-33 0.6739
16 A, 4 B 0.6063 1.6038e-28 0.7140
17 A, 3 B 0.6553 7.0955e-23 0.7646
18 A, 2 B 0.7225 2.3195e-16 0.8274
19 A, 1 B 0.8199 5.6028e-09 0.9048
20 A, 0 B 1.0 1.0 1.0
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Figure 1.10: Similarity 1 values computed on the test case partition of Figure 1.9, with respect
to different values of its tuning parameter α.

Figure 1.11: Similarity 2 log-transformed values computed on the test case partition of Figure
1.9, with respect to different values of its tuning parameter α.

Figure 1.12: Similarity 3 log-transformed values computed on the test case partition of Figure
1.9, with respect to different values of its tuning parameter α.
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Figure 1.13: Similarity 4 log-transformed values values computed on the test case partition of
Figure 1.9, with respect to different values of its tuning parameter a0. The other parameters has
been set to µ0 = 0, λ0 = 1, b0 = 1.

Figure 1.14: Similarity 4 log-transformed values computed on the test case partition of Figure
1.9, with respect to different values of its tuning parameter a0. The other parameters has been
set to µ0 = 0, λ0 = 1, b0 = 2.

Figure 1.15: Similarity 4 log-transformed values computed on the test case partition of Figure
1.9, with respect to different values of its tuning parameter a0. The other parameters has been
set to µ0 = 0, λ0 = 1, b0 = 3.





Chapter 2

Implementation and optimizations

“You see, I’ve brought you my Nellie,” I said, going in.
— Fëdor Dostoevskij, Humiliated and Insulted

The MCMC algorithm to compute the posterior samples of our updated model,
described in Section 1.1, has been implemented in Julia (Bezanson et al., 2017).

Julia is a relatively new programming language that combines the ease and
expressiveness of high-level languages with the efficiency and performance character-
istics of low-level languages. This balance is primarily achieved through just-in-time
(JIT) compilation, using the LLVM framework, along with features as dynamic
multiple dispatch and extensive code specialization against multiple run-time types.
Such design enables Julia to be used interactively, in the same fashion as the R,
MATLAB, or Python consoles, while also supporting the traditional execution
style of statically compiled languages like C, C++, and Fortran. This flexibility
facilitates faster development phases, since code sections can be easily evaluated and
tested, even line by line, while still guaranteeing efficient implementations through
the compilation process. Performance is further enhanced by the native integration
of optimized BLAS (Lawson et al., 1979) and LAPACK libraries for linear algebra
operations, which are essential for many scientific applications. Moreover, Julia
features an extensive ecosystem currently comprising over ten thousand packages
that span nearly all branches of science and engineering. Most of these packages are
well-tested and highly optimized, thus significantly reducing the implementation
time required to users. For instance, in this work, we employed the Distributions
(Besançon et al., 2021) (Lin et al., 2019) and Statistics packages, whereas the
original C implementation required developing all statistical functionalities from
scratch. Given these benefits, choosing Julia was a natural decision.

As we will discuss in Chapter 3, we obtained improved performance in Julia,
with respect to the original C implementation, despite the increased complexity of
the model and the associated MCMC algorithm. This enhancement came at the
reasonable cost of a modest increase in memory requirements, which nowadays is
generally manageable given the currently available technologies. Such improvement

29
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was made possible through various refinements and optimizations, which we now
briefly outline.

2.1 Optimizations

One of the primary challenges encountered during the implementation of the
MCMC algorithm in Julia was managing the amount of memory and allocations
that some functions, structures, or algorithms would require. Initially, during the
development and testing phases, where the correctness of the algorithm was the
only priority, we observed that a significant portion of execution time was actually
consumed by Julia’s garbage collector, which had the burden of tracking all the
allocated memory and reclaiming the unused one to make it available again for new
computations. Therefore, an obvious optimization strategy has been to minimize
unnecessary allocations and manage memory more efficiently. Additionally, ensuring
type stability in the code is another crucial factor for enhancing performance; and
Julia provides several tools to inspect and address both aspects.

Regarding type stability, there are various tools available, such as the Cthulhu
package or the simple @code_warntype macro, which help to verify that a function
is type-stable, which means that the types of all variables can be correctly predicted
by the compiler and remain consistent throughout execution. Type stability is
essential for performance as it allows the compiler to generate optimized machine
code, eliminating the overhead associated with run-time type checks. In fact, Julia
is dynamically-typed, meaning that variables do not need to be explicitly declared
with their types, unlike fully statically-typed languages such as C. In Julia, for
instance, a variable initialized as an integer could later become a float or even a
string, during execution. However, for performance reasons, such dynamisms should
be avoided. Using the aforementioned tools we successfully reduced unnecessary
type instabilities, yet we retained some degree of instability to maintain a certain
level of flexibility, e.g. to allow the selection of cohesion and similarity functions at
runtime.

Regarding memory issues, we deeply inspected the code performance using
the ProfileCanvas package. This profiler generates a flame graph, illustrated in
Figure 2.1, which represents different sections of code with regions whose size is
proportional to specific metrics such as execution time or, in this analysis, the
amount of memory allocations required for each section. The flame graph is read
from left to right regarding the order of execution of the different sections, and
from top to bottom according to the stack trace, meaning the order of subsequent
function calls originating from the initial top one. This visualization enables to
detect whether execution time is spent on productive operations or, instead, on
less efficient activities such as garbage collection and runtime evaluations, thereby
highlighting the portions of code that could possibly be optimized.

The key solution derived from this analysis has been to refactor the code to
operate more in-place. This involved passing as arguments the variables that
would be modified by a function, and applying those changes directly within the
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Figure 2.1: Flame graph derived from an example JDRPM fit with n = 20 and T = 50, ran for
10000 iterates.

function, rather than returning values and subsequently using them to update the
original variables. Additionally, we preallocated all the modelling and working
variables and implemented other straightforward improvements, thanks to the Julia
language functionalities, such as the @view macro. This macro allows to eliminate
unnecessary copies of vectors and matrices by passing references to the specific
slices needed for a certain computation, rather than passing the entire structures.
For example, when only the first row of a matrix M needs to be passed to a function,
using @view M[1,:] instead of M[1,:] prevents a memory allocation.

Another valuable package to conduct performance analyses was BenchmarkTools
(Chen et al., 2016), which allowed to compare entire functions as well as specific
portions of code. Regarding the latter, this package facilitates straightforward
testing of different versions of equivalent instructions to determine which is the most
efficient, as in this case, where we are computing the current number of clusters by
counting the non-zero entries of the nh_tmp variable

using BenchmarkTools
nh_tmp = rand(100)
@btime nclus_temp = sum($nh_tmp .> 0)
# 168.956 ns (2 allocations: 112 bytes)
@btime nclus_temp = count(x->(x>0), $nh_tmp)
# 11.612 ns (0 allocations: 0 bytes)

or this other, where we are retrieving the indexes of the units assigned to cluster k

n = 100; rho_tmp = rand((1:5),n); k = 1
@btime findall(j -> ($rho_tmp)[j]==$k, 1:n) # with anonymous function
# 272.302 ns (5 allocations: 384 bytes)
@btime findall_faster(j -> ($rho_tmp)[j]==$k, 1:n) # custom implementation
# 214.259 ns (3 allocations: 960 bytes)
@btime findall($rho_tmp .== $k) # with element-wise comparison
# 184.112 ns (3 allocations: 320 bytes)

The $ symbol is employed for interpolating a variable, ensuring to treat the vari-
able as a local variable within the scope of benchmark, thereby eliminating any
performance bias that might arise from accessing a global variable.
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During the final stages of code refinement, we also exploited low-level tools such
as the --track-allocation option, which requests Julia to execute the code while
also annotating the source file, line by line, to indicate where allocations occurred
and of which amount. These tools, collectively, contributed to achieving an optimal
level of performance.

2.1.1 Optimizing spatial cohesions

The issue of memory allocation was particularly pronounced in the computation
of spatial cohesions. This computation occurs in both the update steps of γit and
ρt, which are nested within outer loops on draws, time, and units, and involve
additional loops over clusters. Consequently, these cohesion computations would
potentially be executed millions of times during each fit: a simple inspection of
the MCMC algorithm suggests a number of calls between dTn and dTn2, where
d represents the number of iterations, T the time horizon, and n the number of
units. A more precise estimate is not possible due to the variability and randomness
inherent in the inner loops which depend on the distribution of the clusters. Given
this context, optimizing the performance of the cohesion functions was crucial to
provide fast execution times.

The optimization efforts focused on carefully designing the implementations of
the cohesion functions. Cohesions 1, 2, 5, and 6 did not present any complications
or need for further optimization: the natural conversion into code from their
mathematical models proved to be already optimally performing.

The main challenges emerged with cohesions 3 and 4, the auxiliary and double
dippery, which involve linear algebra operations with vectors and matrices that
would increase the computational demands. The initial implementation of these
cohesions was notably slow due to the overhead associated with allocating and
freeing the memory of vectors and matrices at each call. As a result, a significant
portion of execution time was devoted to garbage collection rather than to actual
computations. A preliminary solution involved resorting to a scalar implementation,
which processed each component individually rather than operating on entire vectors
and matrices. This approach effectively eliminated the overhead associated with
the more complex memory structures. Ultimately, we succeeded in combining the
readability of the first method with the efficiency of the second method into a final,
refined solution. Listing 1 showcases the logic behind the three different solutions.

Listing 1: Snippets of Julia code for the three implementation solutions of the spatial cohesions
3 and 4. The first is the naive vector implementation, the second is its scalar conversion, and the
third is the static vector solution.

# original vector version
sbar = [mean(s1), mean(s2)] # this is a standard vector
# all the following matrices and vector will be standard structures
vtmp = sbar - mu_0
Mtmp = vtmp * vtmp'
Psi_n = Psi + S + (k0*sdim) / (k0+sdim) * Mtmp

# scalar-only version
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sbar1 = mean(s1); sbar2 = mean(s2)
vtmp_1 = sbar1 - mu_0[1]
vtmp_2 = sbar2 - mu_0[2]
Mtmp_1 = vtmp_1^2
Mtmp_2 = vtmp_1 * vtmp_2
Mtmp_3 = copy(Mtmp_2)
Mtmp_4 = vtmp_2^2
aux1 = k0 * sdim; aux2 = k0 + sdim
Psi_n_1 = Psi[1] + S1 + aux1 / (aux2) * Mtmp_1
Psi_n_2 = Psi[2] + S2 + aux1 / (aux2) * Mtmp_2
Psi_n_3 = Psi[3] + S3 + aux1 / (aux2) * Mtmp_3
Psi_n_4 = Psi[4] + S4 + aux1 / (aux2) * Mtmp_4

# static improved version
sbar1 = mean(s1); sbar2 = mean(s2)
sbar = SVector((sbar1, sbar2)) # this is a statically-sized vector
# all the following matrices and vector will be statically-sized
vtmp = sbar .- mu_0
Mtmp = vtmp * vtmp'
aux1 = k0 * sdim; aux2 = k0 + sdim
Psi_n = Psi .+ S .+ aux1 / (aux2) .* Mtmp

This final version employs the StaticArrays package of Julia, which enables
more efficient use of vectors and matrices when their sizes are known at compile time.
This is suited for the spatial cohesion computations as we consistently work with
2×1 vectors and 2×2 matrices, due to the context of planar spatial coordinates. The
benefits of this final implementation include preserving the natural mathematical
form of the first solution, thus enhancing code clarity, while also capitalizing on
the performance improvements seen in the second solution. In fact, with static
structures, the compiler is able to optimize all memory allocations related to vectors
and matrices just as it does with simple scalar variables.

Figure 2.2 provides a performance comparison of the three solutions. Panel 2.2c
proves that the scalar and static versions exhibited similar performance, and both
significantly outpaced the initial vector implementation, and both are significantly
faster than the initial vector implementation. Additionally, panels 2.2a and 2.2b
highlight the substantial reduction in memory requirements compared to the first
solution. This comparison was conducted by running the three implementations
against multiple sets of spatial coordinates with a varying number of units n.

Notably, the CDRPM implementation of the corresponding MCMC algorithm
was not required to consider these optimizations, since C does not natively support
vectors and matrices and was therefore forced to the scalar implementation without
much deliberation.

2.1.2 Optimizing covariates similarities

Another significant challenge that we faced consisted in optimizing the com-
putation of the similarity functions. As the cohesion functions, the similarities
would potentially be called millions of times, or even more considering that multiple
covariates can be incorporated in the prior and thus introducing an additional
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(a) (b)

(c)

Figure 2.2: Performance comparison among the three versions of the cohesion 4 function. Similar
results stand for cohesion 3. Panels (a) and (b) are constant at zero for both the scalar and static
cases.

loop based on p, the number of included covariates. As in the case of the previous
analysis, many of the similarity functions did not exhibit a significant need for opti-
mization. However, the fourth function, the auxiliary similarity function, required
optimization due to the computational load associated with calculating the sum of
the squares of the covariate values, as illustrated in Listing 2.

Listing 2: Similarity 4 function implementation, with all optimizing annotations. The perfor-
mance analysis will just focus on that inside loop.

function similarity4(X_jt::AbstractVector{<:Real}, mu_c::Real, lambda_c::Real,
a_c::Real, b_c::Real, lg::Bool)↪→

n = length(X_jt)
nm = n/2
xbar = mean(X_jt)
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aux2 = 0.
@inbounds @fastmath @simd for i in eachindex(X_jt)

aux2 += X_jt[i]^2
end
aux1 = b_c + 0.5 * (aux2 - (n*xbar + lambda_c*mu_c)^2/(n+lambda_c) +

lambda_c*mu_c^2 )↪→

out = -nm*log2pi + 0.5*log(lambda_c/(lambda_c+n)) + lgamma(a_c+nm) -
lgamma(a_c) + a_c*log(b_c) + (-a_c-nm)*log(aux1)↪→

return lg ? out : exp(out)
end

The optimization strategy involved annotating the loop with several macros
provided by Julia. They were the following:

• @inbounds eliminates array bounds checking within expressions. This allows
the compiler to bypass these checks, thus saving execution time. This annota-
tion is safe to use as long as we can guarantee that the code will not access
elements outside the array bounds; otherwise undefined behaviour may occur.
In our case, the loop structure is simple and safe, so this assumption holds
true.

• @fastmath executes a modified version of the expression that may invoke
functions violating strict IEEE semantics1. For instance, using this macro
could result in (a+ b) + c ̸= a+ (b+ c), but only in highly pathological cases.
Again, this is not an issue for our loop, which computes

∑
X2

i , as there is no
intrinsic “correct order” for performing this operation.

• @simd (Single Instruction Multiple Data) allows the compiler to apply further
optimizations to the loop. This technique is akin to parallelism; however,
rather than distributing the computational load across multiple processors,
@simd vectorizes the loop. This means that the CPU can execute the same
instruction (summing the square of the i-th component into a reduction
variable) on multiple data chunks simultaneously using vector registers. As
a result, this approach accelerates computation by eliminating the need to
process each element of the vector individually.

As illustrated in Figure 2.3, the observed performance difference primarily arises
from the use of @simd, while the other two annotations have minimal impact.
Consequently, also to address concerns from pure mathematicians, we opted to
remove the @fastmath annotation, retaining only @inbounds and @simd. Memory
allocation and usage panels are not reported since the analysis focused solely on
evaluating the performance of the inner loop, which does not present any memory-
related issues.

Moreover, we observe that experiments employing the @simd annotation tend
to run faster when n is a power of two compared to n being its nearest rounded

1Institute of Electrical and Electronics Engineers. The IEEE-754 standard specifies floating-
point formats, which dictate how real numbers are represented in hardware, along with the
expected behaviour of arithmetic operations on them, including precision, rounding, and the
handling of special values (e.g., NaN (Not a Number) and infinity).
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Figure 2.3: Performance comparison of the different loop annotations in the similarity 4
implementation.

integers, even though this configuration involves processing relatively more data
points (for instance, 256 versus 250 or 512 versus 500). This pattern underscores
the effectiveness of the SIMD approach: depending on the architectures, CPUs can
support various register sizes (e.g. 64, 128, 256, or 512 bits) and when the total
memory occupied by the data points aligns perfectly with these register sizes, i.e.
when the number of elements is a power of two, the data can be efficiently loaded
into registers without any waste. Conversely, if the data size does not match, there
will be “leftover chunks” that still need to be processed, which can introduce some
overhead due to the inefficiencies associated with the imperfect fit.



Chapter 3

Analysis of the models

In the following analyses, we will make use of the Adjusted Rand Index (ARI)
(Hubert et al., 1985) to compare the partitions generated by the models. The
ARI index serves as a correlation metric that quantifies the similarity between
two clusterings. Specifically, for two partitions ρ1 and ρ2, the function ARI(ρ1, ρ2)
produces a value within the range [−1, 1] where higher values indicate greater
agreement between the partitions. A perfect match ρ1 = ρ2 is represented with the
limit case ARI(ρ1, ρ2) = 1.

We will employ this index to analyse the temporal evolution of the partitions,
examining whether ρt+k correlates with ρt, and to evaluate the level of agreement
between the two models, by comparing clusters estimates generated by CDRPM
and JDRPM. These clusters estimates will be computed using the salso function,
with the binder loss, using the associated salso library (Dahl et al., 2022) on R.

All analyses of this Chapter were conducted on a laptop equipped with 8 GB of
RAM and a 1.80 GHz CPU base clock speed. The software used was R (R Core
Team, 2024), interfaced with Julia through the JuliaConnectoR library (Lenz et al.,
2022). The CDRPM implementation was also accessible from R via a dedicated
package, drpm, developed by (Page et al., 2022), which similarly employs a wrapper
to invoke the C code where the MCMC algorithm is implemented.

3.1 Comparing the two algorithms

Our model, along with its corresponding MCMC algorithm, represents a gener-
alization of the original DRPM and its associated algorithm. The improvements, as
outlined in previous chapters, include the ability to incorporate covariates into both
the prior and likelihood levels of the Bayesian model, the possibility of allowing for
missing data in the response variable, and the guarantee of greater computational
efficiency. In this regard, our updates serve as extensions to the original model;
therefore, when tested under identical datasets, hyperparameters, and MCMC con-
figurations, both models are expected to perform similarly and produce comparable
clusters estimates.

37
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To evaluate the numerical performance of both algorithms, we will analyse
posterior samples and clusters estimates in two scenarios: first using a synthetic
dataset that includes only the response variable, and secondly employing a real-
world spatio-temporal dataset. The latter also provides covariates; however, their
effects will be extensively examined in the dedicated Section 3.3.

3.1.1 On a synthetic dataset

For the initial comparison we generated a dataset consisting of n = 10 units
and T = 12 time instants. The data generating function was the same employed in
(Page et al., 2022) for their analyses, and it allows for the creation of data points
with temporal dependence. Regarding the MCMC setup, both algorithms were
executed deriving 2000 iterates from a total of 50000 iterations, by discarding the
first 40000 as burnin and then thinning by 5. Both models were fitted using a time
specific α and using their full formulations, i.e. including and updating also the
optional autoregression parameters η1i and φ1.

Table 3.1: Comparison between CDRPM and JDRPM fits and their associated algorithms, in
the simulated data scenario.

MSE mean MSE median execution time

CDRPM 1.6221 1.5823 19s
JDRPM 1.2634 1.2034 13s

Lagged ARI values − model C
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Figure 3.1: Lagged ARI values of CDRPM and JDRPM fits, in the simulated data scenario.

During this first experiment, the clusters were defined solely by the target values
from Yit, and both models achieved satisfactory results. Fitted values are presented
in Figure 3.4 alongside the original data. From Table 3.1 we can see how JDRPM
exhibited greater accuracy, as proven by the lower mean squared error (MSE), and
a faster execution time. In the table, the MSEs were computed by comparing the
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fitted values generated by the models, estimated through the mean and the median
of the 2000 iterations, with the true values of the target variable. We do not report
fitting metrics for WAIC and LPML since, in this first analysis, both models were
conceptually equivalent and tested under identical conditions. Consequently, any
observed differences in these metrics would be likely attributable to chance.
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Figure 3.2: Clusters estimates produced by CDRPM and JDRPM fits, in the simulated data
scenario. Time instants are annotated on the x axis, units are indicated vertically by their number,
and colors represent the cluster label.

As illustrated in Figure 3.1, both models effectively captured the same temporal
trend of the clusters. Indeed, the estimated partitions were remarkably similar, as
proven by Figure 3.2, except for two minor differences which we will now discuss.

A closer examination of the clusters presented in Figure 3.3 reveals interesting
distinctions at times t = 1 and t = 9. At t = 1, JDRPM classified unit 7 as
a singleton within the green cluster, whereas CDRPM assigned it to the black
cluster. Both classifications are reasonable: the data point is indeed closer to the
black cluster, but it later aligns more distinctly to the red cluster, suggesting the
classification given by JDRPM as a detection of its initial anomalous behaviour. At
t = 10, both models successfully identified a small, temporary third cluster resulting
from the transition of units 9 and 10. The JDRPM interprets this transition as a
label swap: between times t = 9 and t = 11, unit 9 shifts from the red cluster to
the black cluster, while unit 10 from the black cluster to red cluster. In contrast,
at t = 9 CDRPM assigns both units to the red cluster, potentially reflecting a
misclassification considering the temporal trend of unit 10 which, until t = 10,
exhibited a closer alignment with the black cluster.

3.1.2 On spatio-temporal data

In this section we examine a real-world application by fitting CDRPM’s and
JDRPM’s MCMC algorithms on a spatio-temporal dataset. Specifically, we used
the AgrImOnIA dataset (Fassò et al., 2023) which encompasses measurements of
air pollutants, together with many other environmental variables, in the Lombardy
region of Italy from 2016 to 2021.



40 Chapter 3. Analysis of the models

2 4 6 8 10 12

−
10

−
5

0
5

10

Clusters according to model C−DRPM

time

yr
ed

[i,
 ]

2 4 6 8 10 12

−
10

−
5

0
5

10

Clusters according to model J−DRPM

time

yr
ed

[i,
 ]

Figure 3.3: Visual representation of the clusters estimates produced by CDRPM and JDRPM
fits, in the simulated data scenario. Cluster labels are represented as colored dots overlaid to the
trend of the target variable.

For our subsequent analyses, we employed a dataset comprising weekly averages
from the year 2018. The target variable chosen for these studies was PM10, which
represents the concentration of particulate matter with a diameter of less than
10 µm. This variable underwent log-transformation, to recover a normal distribution,
and was centered with respect to time-wise means. More precisely, each observation
Yit was adjusted by subtracting the mean Ȳt of all observations at that time instant
t. This approach, consistent with the methodology employed by (Page et al.,
2022) during their analyses, helps to emphasize variations within each time point
rather than across the entire dataset. This approach is particularly beneficial for
understanding how individual units deviate from their typical behaviour at specific
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Figure 3.4: Fitted values of CDRPM (middle) and JDRPM (bottom) fits, in the simulated data
scenario, alongside the generated target values (top).
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Figure 3.5: Values of the target variable AQ_pm10 adjusted using the global mean (top) and the
time-wise mean (bottom). Coloring is based on the ranking of PM10 values of the units according
to their median, from highest (red) to lowest (blue).

times, thereby highlighting temporal trends and anomalies. Moreover, this method
effectively mitigates any temporal bias that may arise from periods in which all
target values are disproportionately high or low due to external anomalous factors.
In contrast, the traditional approach of centering the data around their global mean
Ȳ would primarily facilitate the detection of overall trends, without providing an
elaborate examination of each time step. For instance, preliminary analyses using
global centering revealed only three clusters across all time points. While this
result is indeed valid in light of the trend illustrated in Figure 3.5, our alternative
approach produced multiple clusters, thereby enhancing the specialization of the
clusters together with their interpretability.
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To perform the fit, we used all the available stations in the dataset, amounting
to n = 105, but restricted the time horizon to T = 12, corresponding to a three-
month monitoring period. This limitation was implemented solely to reduce the
computational time required to conduct the analyses. As in the previous section,
both CDRPM’s and JDRPM’s MCMC algorithms were fitted with a time-specific
parameter α and using their complete model formulations including the optional
parameters η1i and φ1. Regarding the spatial cohesion, we selected C3, the auxiliary
similarity function. To ensure convergence, we inspected the trace plots of both
model and, in the case of JDRPM, we checked numerical diagnostics as the Effective
Sample Size (ESS) and R̂. In fact, the JDRPM’s implementation is able to provide
such statistical assessments directly from the Julia fitting function. Regarding the
MCMC setup, we derived 4000 iterates from 110000 total iterations, by discarding
the first 90000 as burnin and then thinning by 5.

Table 3.2: Comparison between CDRPM and JDRPM fits and their associated algorithms, in
the real-world scenario.

MSE mean MSE median execution time

CDRPM 0.0142 0.0149 1h38m
JDRPM 0.0131 0.0138 48m

Lagged ARI values − model C
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Figure 3.6: Lagged ARI values of CDRPM and JDRPM fits, in the real-world scenario.

Table 3.2 demonstrates that both models achieved remarkable accuracy in their
fitted values, with JDRPM leading over CDRPM in terms of MSEs. As previously
mentioned, we have chosen not to report the fitting metrics for WAIC and LPML
due to the theoretical equivalence of the evaluated models and their corresponding
MCMC setup. While execution times are included, they may not fully reflect
the actual performance, as when performing the fits I was concurrently engaged
in writing this thesis, which limited my laptop’s computational resources for the
fitting process. Nonetheless, more precise assessment of performance timings will
be presented in Section 3.4.
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Figure 3.7: Fitted values of CDRPM (middle) and JDRPM (bottom) fits, in the real-world
scenario, alongside the generated target values (top).
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Figure 3.6 reveals a similar temporal trend, further validating the correct
implementation of JDRPM’s MCMC algorithm. In terms of clusters similarity, a
partition plot as in Figure 3.2 would appear more congested due to the increased
number of units. To effectively convey this information, we computed the adjusted
Rand index ARI(ρJDRPM(t), ρCDRPM(t)) for all time points t = 1, . . . , 12. The results
yielded a mean of 0.80 and a median of 0.86, denoting a strong agreement between
the clusters estimates generated by the two models.

A visual representation of the clusters estimates generated by the two models is
provided in Figures C.1 and C.2. Nevertheless, a more comprehensive analysis and
discussion of the generated clusters will take place in Section 3.3.2, where we will
also examine fits which include covariates in the prior and likelihood levels.

3.2 Performance with missing values

In this section, we replicate the analyses and evaluations from Section 3.1, this
time focusing on scenarios involving missing values. Our objective is to investigate
how the JDRPM performs in the absence of complete datasets and to determine
whether it maintains effective performances under such conditions.

Given the extent of missing values in the AgrImOnIA dataset (Fassò et al.,
2023), which was used for the spatio-temporal analysis, we opted to set 10% of the
values as missing (NAs). To implement this, we randomly selected nT/10 indexes
from the sets [1, . . . , n] and [1, . . . , T ] to identify all the pairs (i, t) that would be
designated as missing in the target variable Yit. The ability to handle missing data
is an enhancement introduced by the JDRPM; therefore these studies cannot be
repeated with the original CDRPM, which does not accept incomplete datasets.

All the following fits were conducted under the same conditions of their full-
dataset counterpart, i.e. using the same models formulation, parameters, and
MCMC setup.

3.2.1 No spatial information

The JDRPM demonstrated remarkable performance even in the presence of
missing values. As shown in Table 3.3, the model’s performance is understandably
lower compared to the full dataset scenario; however, it clearly remains satisfactory.
The MSE has naturally increased due to the absence of some data points, which
produced less accurate fitted values for the corresponding missing entries. Never-
theless, the fitted values, illustrated in Figure 3.8, remain closely aligned with the
ones derived from the full dataset analysis.

From Figure 3.10, we observe a nearly identical temporal trend to the trend of the
full dataset analysis, indicating how JDRPM effectively captured a robust temporal
dependency structure even when some data points were missing. Additionally, the
clusters generated, as shown in Figure 3.11, appeared remarkably similar. The only
notable difference occurred around time t = 10, where the model now failed to



46 Chapter 3. Analysis of the models

2 4 6 8 10 12

−
10

−
5

0
5

10

J fitted values (NA data) − iterations mean

fitted with NA data
fitted with full data

Figure 3.8: Fitted values of JDRPM fit, in the simulated data scenario, with missing values in
the target variable. Special square markers are devoted to the data points which were missing,
highlighting the gaps between the fitted values on the full dataset (green) and the fitted values on
the dataset with missing values (red).

Table 3.3: Comparison of JDRPM fits, in the simulated data scenario, on a complete dataset
and on a dataset with missing values.

MSE mean MSE median LPML WAIC exec. time

NA data 1.4721 1.2101 -236.93 401.44 13s
full data 1.2634 1.2034 -223.36 393.97 13s
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Figure 3.9: Clusters estimates produced by JDRPM fits, in the simulated data scenario, on
a dataset with missing values. Time instants are annotated on the x axis, units are indicated
vertically by their number, and colors represent the cluster label.

identify the green cluster that characterized the final transition phase of units 9
and 10. This discrepancy may be attributed to the NA assignment of unit 9 at
time 10, which likely removed critical information necessary for identifying that
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Figure 3.10: Lagged ARI values of JDRPM fits, in the simulated data scenario, on a dataset
with missing values.
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Figure 3.11: Visual representation of the clusters estimates produced by JDRPM fit, in the
simulated data scenario, on a dataset with missing values. Cluster labels are represented as
colored dots overlaid to the trend of the target variable, with special point markers devoted to
data points corresponding to missing values.

specific third cluster.

Finally, Figure 3.12 presents the 95% credible intervals for the fitted values
corresponding to the missing data points. Except for one case, the true value
always fell within the credible interval, demonstrating the accuracy of JDRPM
in providing reliable estimates of the target values, even in situations where no
additional information was available from either space or covariates.
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Figure 3.12: Credible intervals, computed with the highest density interval (HDI) method at a
95% confidence, for the fitted values of the missing units in the JDRPM fit, in the simulated data
scenario, on a dataset with missing values. In gray are reported the indexes of units i and time
instants t which where missing, while green dots refer to the true values of the missing data.

3.2.2 With spatial information

The JDRPM demonstrated robust performance also in real-world scenario
involving a dataset with missing values. Table 3.4 indicates a slight reduction
in accuracy, which is expected due to the presence of missing data; however, the
decline is not substantial. The fitted values are displayed in Figure 3.13, revealing
how the estimation of the missing data becomes more challenging for the points
that lie farther away from the main trajectory of the distribution. It is worth
noting that the reported execution times may not fully reflect reality, as previously
mentioned, due to my laptop’s resources not being entirely devoted to the fitting
process. In fact, the JDRPM fit with missing data ran faster than the JDRPM fit
with complete data, which raises some eyebrows since we should expect additional
computational demands when dealing with missing Yit values, due to their sampling
step in the MCMC algorithm. Again, for more accurate performance assessments
we refer to Section 3.4.

Table 3.4: Comparison of JDRPM fits, in the real-world scenario, on a complete dataset and on
a dataset with missing values.

MSE mean MSE median LPML WAIC exec. time

NA data 0.0160 0.0170 502.86 -1793.64 43m
full data 0.0131 0.0138 624.91 -1898.05 48m

The temporal trend remained consistent with what we observed in Section
3.1.2, as evidenced by Figure 3.14. Interestingly, the ARI plot for the JDRPM
fit with missing data closely mirrors the original trend displayed by the CDRPM
fit on the complete dataset; a similar pattern was also noticeable in the previous
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Figure 3.13: Fitted values of JDRPM fit, in the real-world scenario, on a dataset with missing
values. Special square markers are devoted to the data points which were missing, highlighting
the gaps between the fitted values on the full dataset (green) and the fitted values on the dataset
with missing values (red).
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Figure 3.14: Lagged ARI values of JDRPM fits, in the real-world scenario, on a dataset with
missing values.

section regarding fits in the simulated data scenario. To precisely evaluate clusters
similarity, we computed the adjusted Rand index ARI(ρJDRPM_NA(t), ρJDRPM_full(t))
for each time point t = 1, . . . , 12. The results yielded a mean of 0.82 and a median
of 0.86, indicating a strong level of agreement in the partitions despite the loss of a
significant amount of data (121 points out of 1260 from the full dataset).
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3.3 Effects of the covariates

We now conduct several experiments to explore the key advancement introduced
by the JDRPM: the inclusion of covariates. Given their distinctly different purposes,
we study separately the effects of including covariates in the likelihood and including
covariates in the prior. Nevertheless, an analysis of the combined use of both
information levels will be provided in Section 3.3.3. For the upcoming fits, all
included covariates underwent the same time-wise correction applied to the target
variable PM10, as outlined in Section 3.1.2.

3.3.1 Covariates in the likelihood

Following the discussion of the previous section, we can explore whether the
inclusion of covariates in the likelihood can enhance accuracy in fits that deal with
missing data. In fact, the main purpose of introducing the regression parameter βt
was to improve the quality of the model’s estimates of the target values Yit, without
significantly influencing the process of clusters generation. Therefore, the most
natural application of this parameter arises when fitting models with missing data.

Table 3.5: Comparison of JDRPM fits, in the real-world scenario, with and without the inclusion
of covariates in the likelihood, on a complete dataset and on a dataset with missing values.

MSE mean MSE median LPML WAIC exec. time

full data 0.0131 0.0138 624.91 -1898.05 48m
full data + Xlk 0.0112 0.0113 778.96 -2029.84 56m

NA data 0.0160 0.0170 502.86 -1793.64 43m
NA data + Xlk 0.0127 0.0130 625.81 -1902.74 58m
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Figure 3.15: Lagged ARI values of JDRPM fits, in the real-world scenario, with covariates in
the likelihood, on a dataset with missing values
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Indeed, after including multiple covariates in the likelihood and repeating
the fit on the spatio-temporal dataset with missing values, we observed notable
improvements. To effectively compare these enhanced results, we also performed
the corresponding fit with covariates in the likelihood on the complete dataset, with
the resulting clusters estimates displayed in Figure C.3. The results are summarized
in Table 3.5, which also includes reference results from previous fits of Sections
3.1.2 and 3.2.2 which did not include the regressor component.

The inclusion of covariates in the likelihood clearly enhanced all fitting metrics.
This demonstrates that incorporating covariates in the likelihood can be effective
to recover accuracy in the presence of missing values or to generally improve the
estimates of the target variable Yit. The regression vectors βt exhibited favourable
trace plots, as shown in Figures 3.16 and 3.17, confirming the correctness of the
implementation.

Additionally, the values of the regressors appeared reasonable and interpretable.
For instance, it is well established that higher altitudes correlate with lower air
pollution levels, due to the scarcity of emission sources like industries and vehicles,
stronger winds, and lower atmospheric pressure that facilitates air mixing. Con-
sequently, the βt component associated with Altitude hovered around negative
values, indicating a reduction in PM10 concentrations. Conversely, the LI_bovine
covariate, which represents the density of bovines per km2 near the measuring
station, tended to remain positive, reflecting the contribution of livestock industries
to air pollutant emissions.

The generated partitions remained mostly unchanged. The spatio-temporal
trend was similarly preserved, as shown in Figure 3.15, although a generally higher
dependence was noted in the latter part of the time interval, after the correctly
identified change point at t = 4.

The function which implements JDRPM’s MCMC algorithm includes a pa-
rameter beta_update_threshold, defaulted to zero, that specifies the iteration
after which the algorithm begins updating the βt parameter. This addition, both
harmless and straightforward, allows the model to prioritize the updating and refine-
ment of more critical clustering parameters, such as µ⋆

jt and σ2⋆
jt , before turning its

attention to updating the βt parameter. Otherwise, without this adjustment, the
early development of model parameters and cluster assignments could be skewed
by inaccurate samples from the likelihood regressor, potentially compromising the
overall performance of the model.

Figure 3.18 illustrates the fitted values from the JDRPM applied to the spatio-
temporal dataset with missing values and with covariates in likelihood. Visually,
and as demonstrated by the improved MSEs, these fitted values more closely align
with those of the real target variable. This is particularly evident when compared
to the results in Figure 3.7, where both fits were performed without any “external
suggestions” from covariates. Further evidence supporting the effectiveness of
including covariates in the likelihood is provided in Figure 3.19, which displays
the trace plot of the fitted values for a problematic unit and time in which both
the standard JDRPM and CDRPM fits struggled to deliver accurate estimates.
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Figure 3.16: Regression vector βt of JDRPM fit, in the real-world scenario, for the p = 6
covariates inserted in the likelihood, on the full spatio-temporal dataset, with trace plots (left)
and 95% credible intervals (right) computed with the highest density interval (HDI) method.
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Figure 3.17: Regression vector βt of JDRPM fit, in the real-world scenario, for the p = 6
covariates inserted in the likelihood, on the spatio-temporal dataset with missing values, with
trace plots (left) and 95% credible intervals (right) computed with the highest density interval
(HDI) method.
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Figure 3.18: Target and fitted values of the JDRPM fits with target plus space values, on the
NA and full dataset, to see the effects of the insertion of covariates in the likelihood.
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Figure 3.19: Trace plot of the fitted values of a specific unit i and time instant t, comparing the
JDRPM fit with covariates in the likelihood to the standard spatially-informed CDRPM fit. The
green line represents the true value of Yit.

However, with the inclusion of covariates, these estimates have become more precise
and are now closer to the actual associated Yit value.

Overall, this analysis highlights how the addition of the regression parameter βt

can improve the accuracy of the results and partially support the clustering process,
as the contribution from the covariates in improving the Yit estimates reflects into
the update steps of the clustering parameters. In fact, as we saw in (1.10) and
(1.11), the update rules of σ2⋆

jt and µ⋆
jt were also influenced by a term involving βt.
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3.3.2 Covariates in the prior

We now turn our attention to the inclusion of covariates in the prior. In
deciding which covariates to incorporate, we focused on the factors that would most
significantly influence PM10 concentrations. Ultimately, we selected the following
three covariates: (Liu et al., 2020) (Huang et al., 2021)

• WE_wind_speed_10m_max. Wind speed is a key factor affecting air pollutant
concentration levels. Its impact is twofold: on one hand, wind can disperse
pollutants away from their sources, thereby reducing local concentrations;
on the other hand, it can increase airborne contaminants by resuspending
settled particles from surfaces like roads, soil, and buildings. This latter
effect is particularly evident in dry and windy rural areas, making Lombardy
region a relevant case study. The dataset also provided the wind speed
measurements at 100m, however such variable would be more suitable for
broader analyses that track PM10 concentration trends across multiple regions
or countries. In contrast, our approach focused on local dynamics and ground-
level perspectives to cities in Lombardy, thus making the 10m measurements
more appropriate for our objectives.

• WE_tot_precipitation. Rain is well-known for its ability to enhance air
quality by capturing aerosol particles and bringing them down to the ground.
This process, often referred to as wet deposition, precipitation scavenging, or
washout, is highly effective at reducing air pollutant concentrations. Conse-
quently, this variable was considered highly relevant for our analysis.

• WE_blh_layer_max. The boundary layer height (BLH) is another key factor
influencing the dispersion of air contaminants. This variable defines the
maximum altitude at which air mixing takes place. Typically, air cools as
it rises in the atmosphere; however, there can be instances where warm air
exists above colder air. At this boundary, mixing becomes inhibited, as
the warm layer acts like a lid trapping the cooler air, and its associated
pollutants, beneath it. This phenomenon leads to a deterioration in air
quality, as pollution accumulates without a means of dispersal. Consequently,
this covariate measures the maximum height of this problematic layer, with
lower values indicating a higher expected concentration of pollutants due to
restricted vertical mixing.

To conduct the JDRPM fit with covariates in the prior, we retained the same
hyperparameters and MCMC configurations used in our earlier spatio-temporal
experiments described in Sections 3.1.2 and 3.2.2. For the similarity function we
opted for g4, the auxiliary similarity function, setting its parameters to µ0 = 0,
λ0 = 1, a0 = 7.5, and b0 = 2. This selection was based on experimental adjustments
and especially on the standardization and centering process that was applied to
covariates. In fact, as effectively illustrated in Figure 3.20, the trends of the
covariates generally remained within the [−1, 1] interval.

The results of this analysis are quite promising, as highlighted in Table 3.6,
where we observe substantial improvements across all metrics when covariates are
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Figure 3.20: Covariates selected to be included in the prior. Coloring is based on the ranking of
PM10 values of the units according to their median, from highest (red) to lowest (blue).



3.3. Effects of the covariates 57

Table 3.6: Comparison between CDRPM and JDRPM fits and their associated algorithms, in
the real-world scenario, with and without covariates in the prior.

MSE mean MSE median LPML WAIC exec. time

CDRPM 0.0142 0.0149 694.81 -1768.42 1h38m
JDRPM 0.0131 0.0138 624.91 -1898.05 48m

JDRPM + Xcl 0.0126 0.0135 677.71 -1969.76 1h20m
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Figure 3.21: Lagged ARI values of CDRPM and JDRPM fits, in the real-world scenario, with
covariates in the prior.

incorporated into the prior. The temporal trend of this covariates-informed fit is
proposed in Figure 3.21. Although incorporating multiple covariates introduces
the possibility of divergent “clustering suggestions,” their contributions can still be
effectively assessed. This is illustrated by complementing the partition represen-
tations with cluster-specific boxplots for the target variable PM10 and the three
covariates considered in the analysis. Figure 3.22 provides a comparative overview
of the fits reported in Table 3.6. This figure demonstrates how the JDRPM fit with
covariates in the prior captured a more refined and coherent clustering structure
compared to its two competitors.

The JDRPM fit with covariates in the prior, illustrated in panel (c), is the
only model that demonstrated a clear separation among the covariates, particularly
regarding wind speed and total precipitation. A subtler separation also emerged
for the BLH covariate, although somewhat obscured by the overall proximity of
values across all the units, but evidenced by the disappearance of outliers present
in cluster 2 in panels (a) and (b). These distinctions, supported by the improved
metrics, appeared to contribute to a more accurate estimation of the clusters.

For instance, all models successfully identified the cluster extending over the
mountain arch in the northern part of the map. This cluster is characterized by
relatively low levels of PM10 and low values for the wind speed covariate. This is
clearly depicted in panel (c), where cluster 1 is positioned at the bottom of the plot
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Figure 3.22: Visual representation of the clusters estimates produced by CDRPM and JDRPM
fits, in the real-world scenario, exemplified by the case t = 9. The three panels refer to the
standard spatially-informed fits of CDRPM (a) and JDRPM (b), along with the JDRPM with
covariates in the prior (c).

and is well-separated from the other clusters. In panels (a) and (b), the associated
wind speed boxplots also place cluster 1 at the lower end of the scale; however, its
values intersect with those of other clusters, suggesting that some units correctly
assigned to cluster 1 by model (c) may have been misclassified by the other models.
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Another notable improvement is observed in the identification of the most
polluted cluster, depicted in dark red across all panels. While both spatially-
informed models yielded smaller clusters, a singleton in panel (a) and a couple
in panel (b), model (c) provided a more comprehensive analysis by identifying a
larger and more spatially connected region of highly polluted units. This cluster is
also characterized by the second lowest levels of wind speed and total precipitation,
suggesting that these factors likely hindered pollutant dispersion, leading to these
cities becoming the most polluted. Again, this insight was facilitated by the
covariate contributions of model (c), which remained partially concealed in the
purely spatially-informed fits presented in panels (a) and (b).

The impact of incorporating covariates in the prior is further illustrated in
Figures 3.23 and 3.24, which compare the distribution of clusters with respect
to the values of the WE_wind_speed_10m_max covariate. In these figures, colors
represent cluster labels, so that units are ordered not by their conventional indexing
i = 1, . . . , 105 but rather by the clusters sets {i : i ∈ S1t}, . . . , {i : i ∈ Sktt}.
While all models employed PM10 as the target variable, suggesting that the highest
degree of separation should be observed there, we can expect that the inclusion
of covariates would also reveal a clustering pattern within the auxiliary covariates
included. Indeed, the distribution of clusters in the JDRPM fit with covariates
exhibits a clearer distinction regarding the wind speed variable, while this separation
appears more ambiguous in the CDRPM fit. The effects of including covariates
are particularly evident at time points 8, 9, and 12. For instance, at t = 12, the
red cluster identified by CDRPM in Figure 3.23 splits into red, green, and blue
clusters that are more distinctly separated in the JDRPM informed with covariates
shown in Figure 3.24. Additionally, when comparing this latter JDRPM fit with
covariates to the standard spatially-informed JDRPM fit of Figure 3.25, we also
observe a slight improvement.

It is important to note that the enhancement resulting from the inclusion of
covariates could potentially have been more pronounced had we set a higher value for
the parameter cv_weight in the Julia function implementing the MCMC algorithm.
In this analysis, in fact, the covariates-informed fit was obtained with this parameter
set to 0.2, to balance the total contribution of the covariates with that of the spatial
information. Therefore, increasing the value of cv_weight would likely yield even
clearer distinctions in this covariate separation analysis.

3.3.3 Inference on a new location

We now conduct a final analysis that consolidates all the enhancements intro-
duced by the JDRPM. In this analysis, we consider a spatio-temporal scenario
in which a new unit is added at a new location, with the objective of inferring
the values of her target variable time series. Alternatively, this scenario can be
interpreted as removing all data entries from an existing unit within the dataset.
In this context of kriging (Krige, 1951), we aim to evaluate the JDRPM’s accuracy
in predicting the behaviour of a unit for which sensors may be absent or inactive,
with the expectation that the estimation accuracy will improve as model complexity
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Figure 3.23: Distributions of clusters estimates with respect to the wind speed covariate, in the
CDRPM spatially-informed fit.
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Figure 3.24: Distributions of clusters estimates with respect to the wind speed covariate, in the
JDRPM spatially-informed fit with covariates in the prior.

increases. To assert this, we conducted an experiment in which all data entries of
the response variable were to NA for three randomly selected units, represented
in Figure 3.26. We performed multiple JDRPM fits with incremental levels of
information: first with only the spatial information, then incorporating covariates
in the likelihood, and finally including covariates also in the prior. We do not report
the results from tests that included only covariates in the prior, as such an approach
would be more aligned for clustering, rather than kriging. We used the same set
of six covariates employed in Section 3.3.1 for the likelihood component, and the
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Figure 3.25: Distributions of clusters estimates with respect to the wind speed covariate, in the
JDRPM spatially-informed fit.
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Figure 3.26: Representation of the three units selected for the inference analysis on new locations,
with their associated target variable time series (left) and spatial coordinates (right).

same set of three covariates used in Section 3.3.2 for the prior component.

Table 3.7 illustrates that the inclusion of covariates substantially improved the
estimates for the missing units. The MSEs were calculated by taking both the mean
and median of the fitted values from each model and comparing them to the true
values of the missing units. Overall, the fit that incorporated covariates solely in
the likelihood achieved the highest performance level. Notably, the base spatially-
informed fit provided greater estimation accuracy for the fitted values associated
with the green unit. In contrast, for the other units, the covariates-informed fits
proved to be substantially more accurate. Figures 3.28 to 3.30 illustrate the 95%
credible intervals of the estimated target values for the missing units, derived from
the three models examined.
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Table 3.7: Comparison of JDRPM fits and their associated algorithms, in inference analysis on
new locations.

space space+Xlk space+Xlk+Xcl

unit 92
(red)

MSE mean 0.112452 0.042037 0.044957
MSE median 0.111573 0.041676 0.045216

unit 61
(blue)

MSE mean 0.004117 0.002449 0.002527
MSE median 0.004711 0.002547 0.002534

unit 44
(green)

MSE mean 0.003919 0.006368 0.005945
MSE median 0.003997 0.006419 0.005950

execution time 45m 40m 1h15m
LPML 620.98 758.11 791.86
WAIC -1842.48 -2041.95 -1976.73
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Figure 3.27: Covariates included in the likelihood, relative to unit 92, in the inference analysis
on new locations.

It is important to highlight that unit 92, marked in red in Figure 3.26, demon-
strates significantly inferior fitted estimates when compared to other units. This
discrepancy may stem from various factors. First, unit 92 is relatively isolated spa-
tially, situated at a significant distance from its neighbouring units. Secondly, Figure
3.27 illustrates how unit 92 exhibits extreme values for the covariates Altitude and
EM_nh3_sum. Thirdly, the clustering estimates shown in Figures C.1 through C.4
indicate that unit 92 is sometimes classified as a singleton. These factors suggest a
distinctive behaviour in the associated time series on PM10, which may complicate
estimation efforts within the kriging context.

According to (Quintana et al., 2015), the sole inclusion of covariates in the
likelihood accounts only for their linear effects, as represented by the regressor term
βt, resulting in a minimal impact on clusters estimates. In contrast, incorporating
covariates solely in the prior captures all effects of the covariates, often leading to a
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Figure 3.28: Inference analysis of JDRPM on new locations, in the spatially-informed fit.
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Figure 3.29: Inference analysis of JDRPM on new locations, in the spatially-informed fit with
covariates in the likelihood.
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Figure 3.30: Inference analysis of JDRPM on new locations, in the spatially-informed fit with
covariates in the likelihood and in the prior.
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greater number of smaller, more specific clusters, without necessarily improving the
fitted estimates. A balanced approach can be achieved by incorporating covariates
at both levels of information. This strategy allows for the linear effects to be
considered in the likelihood, while also accommodating nonlinear effects in the
clustering process. As a result, this dual approach can yield improved outcomes for
both fitted values and clusters estimates.

3.4 Scaling performances

To rigorously assess whether the objective of faster execution times was achieved,
we designed a series of experiments to compare the two models CDRPM and JDRPM,
and their corresponding implementations, across different dataset sizes and varying
levels of information.

Regarding information levels, CDRPM allowed clustering based exclusively
on the target variable or with the additional spatial information, while JDRPM
expanded these options enabling the inclusion of covariates at both the likelihood
and prior levels. We recall that, aside from the target variable which is of course
always required, all other information levels are optional and independent, allowing
flexible configurations such as fitting with covariates but without spatial informa-
tion. However, with an additive perspective in mind, we conducted incremental
experiments where we progressively inserted new information layers on top of each
other. Specifically, we will compare fits starting with the target variable, followed
by the addition of spatial information, the inclusion of covariates in the prior, and
finally the inclusion of covariates also in the likelihood.

The different information levels affect the model complexity and therefore reflect
into the computational load, however also the size of the testing dataset plays
a significant role. To systematically explore this, we conducted the experiments
across a “mesh” of dataset sizes, with both the number of units n and the time
horizons T ranging through the set {10, 50, 100, 250}. As discussed in Section 2, the
Julia implementation exhibited a slightly higher memory demand compared to the
C implementation. As a consequence, when running the algorithms on the larger
datasets, my system possibly ran out of RAM, requiring some data to be stored in
the slower swap space on the disk and therefore leading to a drop in performance.
As such, the extreme-sized experiments with n or T equal to 250 should be taken
with a pinch of salt as they may reflect system hardware limitations rather than
actual model performance. For all the other experiments, on the other hand, the
results should be highly accurate and reliably proving the JDRPM’s improved
performance.

In conducting the comparisons, we generated synthetic target data Yit and
spatial coordinates si according to the values of n and T . To measure the average
execution time per iteration of each fit we defined the number of iterations to be
inversely proportional to the size of the dataset, e.g. 10000 iterations in the case
(n, T ) = (10, 10) and 16 iterations in the case (n, T ) = (250, 250). This ensured
that each run lasted approximately the same amount of time. Moreover, each fit
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was repeated multiple times to record the minimum execution time observed. This
practice is common in benchmarking and helps to eliminate bias attributable to
system computational demands and fluctuations, to simulate the “ideal” testing
environment in which all computational resources are devoted exclusively to the
model fitting task.

As shown in Figure 3.31, the basic fit using only target values achieves sig-
nificantly faster execution times in Julia, with speedups peaking around a 2x
improvement. Similar performance gains are observed in the fits that incorporate
spatial information, as illustrated in Figure 3.32. Therefore, particularly when
examining the more reliable intermediate-sized tests, we can confidently conclude
that the JDRPM algorithm implementation outperforms the CDRPM algorithm
implementation with respect to execution speed.
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Figure 3.31: Execution times, measured in milliseconds per iteration, when fitting CDRPM and
JDRPM in a simulated data scenario. In the JDRPM plot (right), in brackets, are reported the
speedups relative to the CDRPM timings (left), where higher values indicate better performance.

In the analysis of fits involving covariates, we generated them by randomly
creating matrices of dimensions n× p× T . For these experiments, we maintained a
consistent value for p, the number of covariates, to avoid complications. In fact, the
previous Figures 3.31 and 3.32 represented projections of three-dimensional data:
n, T , and the execution time. If we extended the mesh construction to allow for
varying p we would have dealt with four-dimensional data, or even five-dimensional
if we considered separately covariates in the prior and in the likelihood. Therefore,
to preserve clarity and comprehensibility in our presentation, we fixed p = 5 for
both covariates information levels. Nonetheless, a test with varying p for both prior
and likelihood covariates, but fixed n and T , will be proposed in Figure 3.34.

Figure 3.33 illustrates that fits incorporating covariates experienced a decrease
in performance, which was expected due to the additional computational demands
introduced by the new information layers. However, they maintained a satisfactory
level of performance. As shown in Figure 3.35, some fits that included all informa-
tion levels in Julia were surprisingly faster than a standard spatially-informed fit
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Figure 3.32: Execution times, measured in milliseconds per iteration, when fitting CDRPM
and JDRPM in a real-world scenario. In the JDRPM plot (right), in brackets, are reported the
speedups relative to the CDRPM timings (left), where higher values indicate better performance.

implemented in C.

fit J − target + space + Xcl (p=5)

0.49
(0.61x)

2.59
(0.58x)

5.36
(0.59x)

14.2
(0.58x)

3.61
(0.63x)

19.2
(0.65x)

41.9
(0.69x)

132.75
(0.72x)

9.34
(0.81x)

57.95
(0.72x)

126.6
(0.78x)

457.25
(0.83x)

45.73
(0.92x)

298
(0.75x)

702
(0.8x)

2551.25
(0.81x)

n=10 n=50 n=100 n=250

T=10

T=50

T=100

T=250

fit J − target + space + Xcl + Xlk (p=5)

0

500

1000

1500

2000

2500

0.63
(0.48x)

3.22
(0.47x)

6.52
(0.48x)

17.25
(0.48x)

4.12
(0.55x)

22.4
(0.55x)

48.9
(0.59x)

157
(0.61x)

12.34
(0.62x)

76.7
(0.54x)

168.8
(0.59x)

503
(0.76x)

46.75
(0.9x)

317.75
(0.7x)

770.5
(0.73x)

2657.5
(0.78x)

n=10 n=50 n=100 n=250

T=10

T=50

T=100

T=250

ms/it

Figure 3.33: Execution times, measured in milliseconds per iteration, when fitting JDRPM in a
real-world scenario, with a fixed number p = 5 of covariates in the prior (left) and in both the
prior and the likelihood (right). In brackets are reported the speedups relative to the JDRPM
timings of the fits with spatial information, with higher values still indicating better performance.

Building on the encouraging results presented, we further investigated the model
complexity at which the JDRPM implementation would reach the execution times
provided by CDRPM. To conduct this analysis, we selected a moderately-sized
dataset with n = 50 and T = 50, and used the performance metric from the
CDRPM fit with spatial information as a reference; a value of 24 ms/iteration
as retrieved by Figure 3.32. We then assessed the performance of JDRPM fits
that included covariates at both likelihood and clustering levels, allowing p to vary
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independently in each information level to identify the degree of complexity at
which the new implementation would align with the original one. The results of
this analysis are summarized in Figure 3.34.

Our experiments suggest that until that until we include pcl = 5 covariates in
the prior, we can expect JDRPM to outclass the CDRPM performance reference.
This indicates that within the same amount of time in which CDRPM executes a
spatially-informed fit, JDRPM can perform a fit including up to five covariates in
the prior. Additionally, there is potential to include an indeterminate number of
covariates in the likelihood, since the main performance drop appeared to associated
with the increasing of pcl, rather than of plk.
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Figure 3.34: Execution times, measured in milliseconds per iteration, when fitting JDRPM in a
real-world scenario, with a varying number of covariates in the likelihood (symbol lk on the y
axis) and in the prior (symbol cl on the x axis). In brackets are reported the speedups relative to
the CDRPM timing of the spatially-informed fit on the same n = 50, T = 50 dataset size, with
higher values indicating better performance.

As in the previous tests of this section, this analysis was conducted with the
intention of dedicating all available computational resources to the fitting task;
therefore, the results should be regarded as accurate. Notably, even in the noisier
environment of the real-world experiments, a considerable speedup was observed,
further proving the performance improvements achieved. The real-world experiments
were carried out on a dataset comprising n = 105 units and T = 12 time instants,
with a summary of their results presented in Table 3.6. From this table, we note
that the spatially-informed CDRPM fit required 1 hour and 38 minutes, while both
JDRPM fits, with equivalent setup and with covariates in the prior, exhibited faster
execution times. Remarkably, the equivalent JDRPM fit reduced the execution time
by more than half, aligning with the measured speedup factor of 1.95x reported in
Figure 3.32 when considering the closest corresponding case of n = 100 and T = 10.
Additionally, the fit that included covariates in the prior demonstrated the expected
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speedup suggested by Figure 3.35, which we now discuss in detail.

Figure 3.35 encapsulates all the performance analyses conducted so far. It also
offers an additional insight: the bottom right panel, corresponding to experiments
on n = 250 units, reveals a convergence pattern in the speedup factors across all
fits, denoting how all models tend to exhibit similar execution times regardless
of the information levels included. This suggests that when applied to large-scale
datasets, the performance bottleneck of JDRPM but also CDRPM shifts from the
algorithmic complexity, that is, from the selection of desired information levels, to
the limitations of available hardware resources.
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Figure 3.35: Visual representation of the performance of all the fits, for all the n and T cases,
relatively to the JDRPM fit using target values and spatial information. Namely, the execution
time per iteration metric of that fit has been taken as a reference, to which then all other fits
have been compared to derive their speedup (or slowdown) factor. Points above the reference line
indicate slower fits, while points below denote faster fits.



Chapter 4

Conclusion

And what in human reckoning seems still afar off,
may by the Divine ordinance be close at hand, on the
eve of its appearance. And so be it, so be it!

— Fëdor Dostoevskij, Brothers Karamazov

In conclusion, the JDRPM represents a significant enhancement over the original
CDRPM. From a theoretical perspective, JDRPM retains the foundational structure
of its predecessor while introducing the covariates in the prior and likelihood levels.
Together with the reduction in the execution times, this is the core upgrade since it
should help to yield more accurate and informed results in the partitions. Moreover,
the modification on the variances, from a uniform law to an inverse gamma, possibly
could enhance the quality of the posterior samples. This choice, in fact, restored
conjugacy within the model, thereby improving the mixing properties of the Markov
chain during the fitting process.

Despite these improvements, it is important to acknowledge potential drawbacks
associated with the increased complexity of the model. The robustness of the fits
may diminish as the intricacies of parameters selection, particularly concerning the
ones regulating cohesion and similarity functions, can significantly influence the
clusters estimates. To this end, Chapter 1 provided a comprehensive analysis about
how the possible choices of the parameters for cohesion and similarity functions
reflected on their computed values. Moreover, in fits including both space and
covariates information, reaching an appropriate balance between these two sources
of information may require empirical testing. To address this balance, the Julia
function MCMC_fit includes an optional argument, cv_weight, defaulted to 1, that
allows to adjust the influence of covariates similarities.

The additional complexity of JDRPM is especially evident when defining the
prior for the inverse gamma distribution, inherently more delicate than a simpler
uniform, of the variance parameters. Other than conducting multiple experi-
ments and studying the trace plots to asses a correct behaviour, a pragmatic
approach to address this challenge could be in conducting an initial fit using the
original CDRPM, to see the expected range in which the variance samples tend
to settle, and tune accordingly the inverse gamma parameters in the JDRPM
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fit. For instance, in the spatio-temporal experiments detailed in Section 3.1.2,
we observed low variance estimates from the CDRPM fits. Consequently, we
assigned an invGamma(a = 1.9, b = 0.4) for λ2 and τ 2t , which has 90% of his
density in the interval [0.109151, 1.58222]. For the more critical parameter σ2⋆

jt

we adopted a less informative prior invGamma(a = 0.01, b = 0.01) which, despite
being not always recommended (Gelman, 2004), proved to be effective and pre-
cise relative to sampled reference values from CDRPM. An alternative strategy,
albeit less theoretically appealing, could involve truncating the inverse gamma
distributions to mitigate the risk of sampling excessively high values when un-
informative priors are inadequately adjusted by data. This adjustment can be
seamlessly integrated into the Julia code by modifying rand(InverseGamma(a,b))
to rand(truncated(InverseGamma(a,b),l,u)), where l and u define truncation
bounds.

From a computational perspective, we successfully reduced execution times by
up to 50% compared to the original implementation. Although this occurred with a
slight increase in memory requirements, it is a trade-off that is surely manageable
with the modern computing resources.

Looking ahead, there remains a wide opportunity for further refinements, par-
ticularly in the usability front given the actual complexity of the model. While
the current JDRPM implementation features basic logging capabilities, that allow
for stepwise computation tracking, there is potential for more sophisticated pro-
filing and monitoring tools that leverage Julia’s flexibility. Possible suggestions
could include heuristics about the initialization of the hyperparameters, based on
the specific datasets at hand, or visualization tools, using Julia’s robust plotting
ecosystem, to provide real-time monitoring of the sampled parameters distributions
and trace plots directly during execution. Moreover, the reduced computation
time could allow to implement parallel processing with multiple chains, which is a
common in technique in MCMC algorithms, to further improve the quality of the
sampled values. Exploring GPU integration through packages within the JuliaGPU
collection may also yield significant computational efficiencies.

In short, while the JDRPM’s complexity may present certain challenges, it also
lays the groundwork for significant methodological advancements and practical
enhancements. Our developments are expected to improve the model’s applicability
and accuracy, for more effective research outcomes.



Appendix A

Theoretical details

A.1 Extended computations of the full conditionals

We propose here the extended computations which allowed to extract the full
conditionals presented in Chapter 1. We report also the model graph of JDRPM
to make it quickly accessible as a reference for the laws involved in the following
computations.

Yit ∼ N (µ⋆
citt

+ η1iYit−1 + xT
itβt, σ

2⋆
citt

(1− η21i))
Yi1 ∼ N (µ⋆

ci11
+ xT

i1β1, σ
2⋆
ci11

)

ξi = Logit(1
2
(η1i + 1)) ∼ Laplace(a, b)

σ2⋆
jt ∼ invGamma(aσ, bσ) βt ∼ Np(b, s

2I)

µ⋆
jt ∼ N (ϑt, τ

2
t )

τ 2t ∼ invGamma(aτ , bτ )
ϑt ∼ N ((1− φ1)φ0 + φ1ϑt−1, λ

2(1− φ2
1))

ϑ1 ∼ N (φ0, λ
2)

α(it) ∼ Beta(aα(i), bα(i))
γit

ind∼ Ber(α(it))

φ0 ∼ N (m0, s
2
0) φ1 ∼ U(−1, 1) λ2 ∼ invGamma(aλ, bλ)

• update σ2⋆
jt . This full conditional derivation is characteristic of JDRPM only,

since in CDRPM the variance had a uniform law and was therefore updated
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through a Metropolis step.

for t = 1:
f(σ2⋆

jt |−) ∝ f(σ2⋆
jt )f({Yit : cit = j}|σ2⋆

jt ,−)

= LinvGamma(aσ ,bσ)(σ
2⋆
jt )
∏
i∈Sjt

LN (µ⋆
citt

+xT
itβt,σ2⋆

cit1
)(Yit)

∝

[(
1

σ2⋆
jt

)aσ+1

exp

{
− 1

σ2⋆
jt

b

}]

·

∏
i∈Sjt

(
1

σ2⋆
jt

)1/2

exp

{
− 1

2σ2⋆
jt

(Yit − µ⋆
jt − xT

itβt)
2

}
∝
(

1

σ2⋆
jt

)(aσ+|Sjt|/2)+1

exp

− 1

σ2⋆
jt

bσ +
1

2

∑
i∈Sjt

(Yit − µ⋆
jt − xT

itβt)
2


=⇒ f(σ2⋆

jt |−) ∝ kernel of a invGamma(aσ(post), bσ(post)) with

aτ(post) = aσ +
|Sjt|
2

bτ(post) = bσ +
1

2

∑
i∈Sjt

(Yit − µ⋆
jt − xT

itβt)
2 (A.1)

for t > 1:
f(σ2⋆

jt |−) ∝ f(σ2⋆
jt )f({Yit : cit = j}|σ2⋆

jt ,−)

= LinvGamma(aσ ,bσ)(σ
2⋆
jt )
∏
i∈Sjt

LN (µ⋆
citt

+η1iYit−1+xT
itβt,σ2⋆

cit1
)(Yit)

∝

[(
1

σ2⋆
jt
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{
− 1

σ2⋆
jt

b

}]

·

∏
i∈Sjt

(
1

σ2⋆
jt
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{
− 1

2σ2⋆
jt

(Yit − µ⋆
jt − η1iYit−1 − xT
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2

}
∝
(

1

σ2⋆
jt
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σ2⋆
jt
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1

2

∑
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(Yit − η1iYit−1 − µ⋆
jt − xT
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2


=⇒ f(σ2⋆

jt |−) ∝ kernel of a invGamma(aσ(post), bσ(post)) with

aτ(post) = aσ +
|Sjt|
2

bτ(post) = bσ +
1

2

∑
i∈Sjt

(Yit − µ⋆
jt − η1iYit−1 − xT

itβt)
2 (A.2)
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• update µ⋆
jt. This update rule is the same for both JDRPM and CDRPM.

for t = 1:
f(µ⋆

jt|−) ∝ f(µ⋆
jt)f({Yit : cit = j}|µ⋆

jt,−)

= LN (ϑt,τ2t )
(µ⋆

jt)
∏
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(A.3)

for t > 1:
f(µ⋆
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µ⋆
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(A.4)

• update βt. This full conditional derivation is characteristic of JDRPM only,
since the insertion of a regression term in the likelihood is a feature introduced
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by our generalized model.

for t = 1:
f(βt|−) ∝ f(βt)f({Y1t, . . . , Ynt}|βt,−)
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(A.5)

for t > 1:
f(βt|−) ∝ f(βt)f({Y1t, . . . , Ynt}|βt,−)
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=⇒ f(βt|−) ∝ kernel of a N (b(post), A(post)) with
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(A.6)

• update τ 2t . This full conditional derivation is characteristic of JDRPM only,
since in CDRPM the variance had a uniform law and was therefore updated
through a Metropolis step.

f(τ 2t |−) ∝ f(τ 2t )f((µ
⋆
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• update ϑt. This update rule is the same for both JDRPM and CDRPM.

for t = T :
f(ϑt|−) ∝ f(ϑt)f((µ

⋆
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=⇒ f(ϑt|−) ∝ kernel of a N (µϑt(post), σ
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(A.8)

for 1 < t < T :
f(ϑt|−) ∝ f(ϑt)f((µ
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(A.9)

for t = 1:
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• update φ0. This update rule is also the same for both JDRPM and CDRPM.

f(φ0|−) ∝ f(φ0)f((ϑ1, . . . , ϑT )|φ0,−)
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• update λ2. This full conditional derivation is characteristic of JDRPM only,
since in CDRPM the variance had a uniform law and was therefore updated
through a Metropolis step.

f(λ2|−) ∝ f(λ2)f(ϑ1, . . . , ϑT |λ2,−)
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T∏
t=2

LN ((1−φ1)φ0+φ1ϑt−1,λ2(1−φ2
1))
(ϑt)

∝

[(
1

λ2
t

)aλ+1

exp

{
− bλ
λ2

}][(
1

λ2

)1/2

exp

{
− 1

2λ2
(ϑ1 − φ0)

2

}]

·

[
T∏
t=2

(
1

λ2

)1/2

exp

{
− 1

2λ2
(ϑt − (1− φ1)φ0 − φ1ϑt−1)

2

}]

∝
(

1

λ2

)(T
2
+aλ)+1

· exp

{
− 1

λ2

(
(ϑ1 − φ0)

2

2
+
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• update α. This update rule is the same for both JDRPM and CDRPM.

if global α: prior is α ∼ Beta(aα, bα)
f(α|−) ∝ f(α)f((γ11, . . . , γ1T , . . . , γn1, . . . , γnT )|α)
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T∑
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if time specific α: prior is αt ∼ Beta(aα, bα)
f(αt|−) ∝ f(αt)f((γ1t, . . . , γnt)|αt)

∝ αaα−1
t (1− αt)

bα−1

n∏
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∑n
i=1 γit)−1

t (1− αt)
(bα+n−

∑n
i=1 γit)−1
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if unit specific α: prior is αi ∼ Beta(aαi, bαi)
f(αi|−) ∝ f(αi)f((γi1, . . . , γiT )|αi)

∝ αaαi−1
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T∑
t=1

γit (A.15)

if time and unit specific α: prior is αit ∼ Beta(aαi
, bαi

)

f(αit|−) ∝ f(αit)f(γit|αit)

∝ αa−1
it (1− αit)

b−1αγit
it (1− αit)

1−γit

= α
(a+γit)−1
i (1− αi)

(b+1−γit)−1

=⇒ f(αit|−) ∝ kernel of a Beta(aα(post), bα(post)) with
aα(post) = aαi + γit bα(post) = bαi + 1− γit (A.16)
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• update a missing observation Yit. This full conditional derivation is character-
istic of JDRPM only, since the handling of missing data feature introduced
by our generalized model.

for t = 1:
f(Yit|−) ∝ f(Yit)f(Yit+1|Yit,−)

= LN (µ⋆
citt

+xT
itβt,σ2⋆

citt
)(Yit)

· LN (µ⋆
cit+1t+1+η1iYit+xT

it+1βt+1,σ2⋆
cit+1t+1(1−η21i))

(Yit+1)

∝ exp

{
− 1

2σ2⋆
citt

(Yit − µ⋆
citt

− xT
itβt)

2

}
· exp

{
− 1

2σ2⋆
cit+1t+1(1− η21i)

(Yit+1 − µ⋆
cit+1t+1 − η1iYit − xT

it+1βt+1)
2

}

= exp

{
− 1

2σ2⋆
citt

(
Yit − (µ⋆

citt
+ xT

itβt)
)2}

· exp

− η21i
2σ2⋆

cit+1t+1(1− η21i)

(
Yit −

Yit+1 − µ⋆
cit+1t+1 − xT

it+1βt+1

η1i

)2


=⇒ f(Yit|−) ∝ N (µYit(post), σ
2
Yit(post)) with

σ2
Yit(post) =

1

1
σ2⋆
citt

+
η21i

2σ2⋆
cit+1t+1(1−η21i)

µYit(post) = σ2
Yit(post)

(
µ⋆
citt

+ xT
itβt

σ2⋆
citt

+
η1i(Yit+1 − µ⋆

cit+1t+1 − xT
it+1βt+1)

σ2⋆
cit+1t+1(1− η21i)

)
(A.17)

for 1 < t < T :
f(Yit|−) ∝ f(Yit)f(Yit+1|Yit,−)

= LN (µ⋆
citt

+η1iYit−1+xT
itβt,σ2⋆

citt
)(Yit)

· LN (µ⋆
cit+1t+1+η1iYit+xT

it+1βt+1,σ2⋆
cit+1t+1(1−η21i))

(Yit+1)

∝ exp

{
− 1

2σ2⋆
citt(1− η21i)

(Yit − µ⋆
citt

− η1iYit−1 − xT
itβt)

2

}
· exp

{
− 1

2σ2⋆
cit+1t+1(1− η21i)

(Yit+1 − µ⋆
cit+1t+1 − η1iYit − xT

it+1βt+1)
2

}

= exp

{
− 1

2σ2⋆
citt(1− η21i)

(
Yit − (µ⋆

citt
+ η1iYit−1 + xT

itβt)
)2}

· exp

− η21i
2σ2⋆

cit+1t+1(1− η21i)

(
Yit −

Yit+1 − µ⋆
cit+1t+1 − xT

it+1βt+1

η1i

)2


=⇒ f(Yit|−) ∝ N (µYit(post), σ
2
Yit(post)) with
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σ2
Yit(post) =

1− η21i
1

σ2⋆
citt

+
η21i

σ2⋆
cit+1t+1

µYit(post) = σ2
Yit(post)

(
µ⋆
citt

+ η1iYit−1 + xT
itβt

σ2⋆
citt(1− η21i)

+
η1i(Yit+1 − µ⋆

cit+1t+1 − xT
it+1βt+1)

σ2⋆
cit+1t+1(1− η21i)

)
(A.18)

for t = T :
f(Yit|−) ∝ f(Yit)

= LN (µ⋆
citt

+η1iYit−1+xT
itβt,σ2⋆

citt
(1−η21i))

(Yit)

=⇒ f(Yit|−) is just the likelihood of Yit (A.19)



Appendix B

Computational details

B.1 Implementation of the MCMC algorithm

We now present the code from the MCMC_fit function which implements the
JDRPM algorithm. We report exclusively the functional part of the implementation,
omitting setup lines related to function definitions, variable preallocations, and
input argument checks. This inclusion allows readers to appreciate the ease, clarity,
and elegance of the Julia language in translating the mathematical formulations
into code. As such, we hope that Julia will emerge as the natural choice in the
statistical and scientific computing fields, offering them a refreshing approach.

In addition to the points discussed in Chapter 2, we note that the productivity
granted by the Julia language is not only derived from its extensive ecosystem
of packages and documentation, but also from an active online forum (https://
discourse.julialang.org), where I personally posed some questions and received
valuable answers during the development of this thesis.

Listing 3: Julia code that implements JDRPM’s MCMC algorithm.

############# start MCMC algorithm #############
println(replace(string(now()),"T" => " ")[1:end-4])
println("Starting MCMC algorithm")

t_start = now()
progresso = Progress(round(Int64(draws)),

showspeed=true,
output=stdout, # default is stderr, which turns out in orange color on R
dt=1, # every how many seconds update the feedback
barlen=0 # no progress bar
)

@inbounds for i in 1:draws
############# sample the missing values #############
# from the "update rho" section onwards also the Y[j,t] will be needed (to

compute weights, update laws, etc)↪→

# so we need now to simulate the values for the data which are missing (from
their full conditional)↪→

if Y_has_NA
# we have to use the missing_idxs to remember which units and at which

times had a missing value,↪→
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# in order to simulate just them and instead use the given value for the
other units and times↪→

for (j,t) in missing_idxs
# Problem: if when filling a NA we occur in another NA value? eg when

we also need Y[j,t±1]↪→

# I decided here to set that value to 0, if occurs, since anyway target
should be centered↪→

# so it seems a reasonable patch
# We could have decided to ignore this computation and just use the

likelihood as proposal↪→

# filling distribution, but this would have just worked in the Y[j,t+1]
case so the general↪→

# problem would have still been there

c_it = Si_iter[j,t]
Xlk_term_t = (lk_xPPM ? dot(view(Xlk_covariates,j,:,t), beta_iter[t]) :

0)↪→

aux1 = eta1_iter[j]^2

if t==1
c_itp1 = Si_iter[j,t+1]
Xlk_term_tp1 = (lk_xPPM ? dot(view(Xlk_covariates,j,:,t+1),

beta_iter[t+1]) : 0)↪→

sig2_post = 1 / (1/sig2h_iter[c_it,t] +
aux1/(sig2h_iter[c_itp1,t+1]*(1-aux1)))↪→

mu_post = sig2_post * (
(1/sig2h_iter[c_it,t])*(muh_iter[c_it,t] + Xlk_term_t) +
(eta1_iter[j]/(sig2h_iter[c_itp1,t+1]*(1-aux1)))*((ismissing(Y[j,t+1])

? 0 : Y[j,t+1]) - muh_iter[c_itp1,t+1] - Xlk_term_tp1)↪→

)

Y[j,t] = rand(Normal(mu_post,sqrt(sig2_post)))

elseif 1<t<T
c_itp1 = Si_iter[j,t+1]
Xlk_term_tp1 = (lk_xPPM ? dot(view(Xlk_covariates,j,:,t+1),

beta_iter[t+1]) : 0)↪→

sig2_post = (1-aux1) / (1/sig2h_iter[c_it,t] +
aux1/sig2h_iter[c_itp1,t+1])↪→

mu_post = sig2_post * (
(1/(sig2h_iter[c_it,t]*(1-aux1)))*(muh_iter[c_it,t] +

eta1_iter[j]*(ismissing(Y[j,t-1]) ? 0 : Y[j,t-1]) +
Xlk_term_t) +

↪→

↪→

(eta1_iter[j]/(sig2h_iter[c_itp1,t+1]*(1-aux1)))*((ismissing(Y[j,t+1])
? 0 : Y[j,t+1]) - muh_iter[c_itp1,t+1] - Xlk_term_tp1)↪→

)

Y[j,t] = rand(Normal(mu_post,sqrt(sig2_post)))

else # t==T
Y[j,t] = rand(Normal(

muh_iter[c_it,t] + eta1_iter[j]*(ismissing(Y[j,t-1]) ? 0 :
Y[j,t-1]) + Xlk_term_t,↪→

sqrt(sig2h_iter[c_it,t]*(1-aux1))
))

end
end

end
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for t in 1:T
############# update gamma #############
for j in 1:n

if t==1
gamma_iter[j,t] = 0
# at the first time units get reallocated

else
# we want to find rho_t^{R_t(-j)} ...
indexes = findall_faster(jj -> jj != j && gamma_iter[jj, t] == 1,

1:n)↪→

Si_red = Si_iter[indexes, t]
copy!(Si_red1, Si_red)
push!(Si_red1, Si_iter[j,t]) # ... and rho_t^R_t(+j)}

# get also the reduced spatial info if sPPM model
if sPPM

sp1_red = @view sp1[indexes]
sp2_red = @view sp2[indexes]

end
# and the reduced covariates info if cl_xPPM model
if cl_xPPM

Xcl_covariates_red = @view Xcl_covariates[indexes,:,t]
end

# compute n_red's and nclus_red's and relabel
n_red = length(Si_red) # = "n" relative to here, i.e. the

sub-partition size↪→

n_red1 = length(Si_red1)
relabel!(Si_red,n_red)
relabel!(Si_red1,n_red1)
nclus_red = isempty(Si_red) ? 0 : maximum(Si_red) # = number of

clusters↪→

nclus_red1 = maximum(Si_red1)

# save the label of the current working-on unit j
j_label = Si_red1[end]

# compute also nh_red's
nh_red .= 0
nh_red1 .= 0
for jj in 1:n_red

nh_red[Si_red[jj]] += 1 # = numerosities for each cluster label
nh_red1[Si_red1[jj]] += 1

end
nh_red1[Si_red1[end]] += 1 # account for the last added unit j, not

included in the above loop↪→

# start computing weights
lg_weights .= 0

# unit j can enter an existing cluster...
for k in 1:nclus_red

# filter the indexes of the units of label k
aux_idxs = findall(Si_red .== k)
lC .= 0.
if sPPM

copy!(s1o, sp1_red[aux_idxs])
copy!(s2o, sp2_red[aux_idxs])
copy!(s1n,s1o); push!(s1n, sp1[j])
copy!(s2n,s2o); push!(s2n, sp2[j])
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spatial_cohesion!(spatial_cohesion_idx, s1o, s2o,
sp_params_struct, true, M_dp, S,1,false,lC)↪→

spatial_cohesion!(spatial_cohesion_idx, s1n, s2n,
sp_params_struct, true, M_dp, S,2,false,lC)↪→

end

lS .= 0.
if cl_xPPM

for p in 1:p_cl
if isa(first(Xcl_covariates[j,p,t]),Real) # numerical

covariate↪→

copy!(Xo, @view Xcl_covariates_red[aux_idxs,p])
copy!(Xn, Xo); push!(Xn,Xcl_covariates[j,p,t])

if covariate_similarity_idx == 4
covariate_similarity!(covariate_similarity_idx, Xo,

cv_params_sim4[p], Rs[p,t],
true,1,true,lS,cv_weight)

↪→

↪→

covariate_similarity!(covariate_similarity_idx, Xn,
cv_params_sim4[p], Rs[p,t],
true,2,true,lS,cv_weight)

↪→

↪→

else
covariate_similarity!(covariate_similarity_idx, Xo,

cv_params, Rs[p,t], true,1,true,lS,cv_weight)↪→

covariate_similarity!(covariate_similarity_idx, Xn,
cv_params, Rs[p,t], true,2,true,lS,cv_weight)↪→

end
else # categorical covariate

copy!(Xo_cat, @view Xcl_covariates_red[aux_idxs,p])
copy!(Xn_cat, Xo_cat);

push!(Xn_cat,Xcl_covariates[j,p,t])↪→

covariate_similarity!(covariate_similarity_idx, Xo_cat,
cv_params, Rs[p,t], true,1,true,lS,cv_weight)↪→

covariate_similarity!(covariate_similarity_idx, Xn_cat,
cv_params, Rs[p,t], true,2,true,lS,cv_weight)↪→

end
end

end

lg_weights[k] = log(nh_red[k]) + lC[2] - lC[1] + lS[2] - lS[1]
end

# ... or unit j can create a singleton
lC .= 0.
if sPPM

spatial_cohesion!(spatial_cohesion_idx, SVector(sp1[j]),
SVector(sp2[j]), sp_params_struct, true, M_dp, S,2,false,lC)↪→

end
lS .= 0.
if cl_xPPM

for p in 1:p_cl
if covariate_similarity_idx == 4

covariate_similarity!(covariate_similarity_idx,
SVector(Xcl_covariates[j,p,t]), cv_params_sim4[p],
Rs[p,t], true, 2,true,lS,cv_weight)

↪→

↪→

else
covariate_similarity!(covariate_similarity_idx,

SVector(Xcl_covariates[j,p,t]), cv_params, Rs[p,t],
true, 2,true,lS,cv_weight)

↪→

↪→

end
end
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end
lg_weights[nclus_red+1] = log_Mdp + lC[2] + lS[2]

# now use the weights towards sampling the new gamma_jt
max_ph = maximum(@view lg_weights[1:(nclus_red+1)])
sum_ph = 0.0

# exponentiate...
for k in 1:(nclus_red+1)

# for numerical purposes we subract max_ph
lg_weights[k] = exp(lg_weights[k] - max_ph)
sum_ph += lg_weights[k]

end
# ... and normalize
lg_weights ./= sum_ph

# compute probh
probh::Float64 = 0.0
if time_specific_alpha==false && unit_specific_alpha==false

probh = alpha_iter / (alpha_iter + (1 - alpha_iter) *
lg_weights[j_label])↪→

elseif time_specific_alpha==true && unit_specific_alpha==false
probh = alpha_iter[t] / (alpha_iter[t] + (1 - alpha_iter[t]) *

lg_weights[j_label])↪→

elseif time_specific_alpha==false && unit_specific_alpha==true
probh = alpha_iter[j] / (alpha_iter[j] + (1 - alpha_iter[j]) *

lg_weights[j_label])↪→

elseif time_specific_alpha==true && unit_specific_alpha==true
probh = alpha_iter[j,t] / (alpha_iter[j,t] + (1 -

alpha_iter[j,t]) * lg_weights[j_label])↪→

end

# compatibility check for gamma transition
if gamma_iter[j, t] == 0

# we want to find rho_(t-1)^{R_t(+j)} ...
indexes = findall_faster(jj -> jj==j || gamma_iter[jj, t]==1,

1:n)↪→

Si_comp1 = @view Si_iter[indexes, t-1]
Si_comp2 = @view Si_iter[indexes, t] # ... and rho_t^R_t(+j)}

rho_comp = compatibility(Si_comp1, Si_comp2)
if rho_comp == 0

probh = 0.0
end

end
# sample the new gamma
gt = rand(Bernoulli(probh))
gamma_iter[j, t] = gt

end
end # for j in 1:n

############# update rho #############
# we only update the partition for the units which can move (i.e. with

gamma_jt=0)↪→

movable_units = findall(gamma_iter[:,t] .== 0) # fast

for j in movable_units
# remove unit j from the cluster she is currently in

if nh[Si_iter[j,t],t] > 1 # unit j does not belong to a singleton
cluster↪→

nh[Si_iter[j,t],t] -= 1
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# no nclus_iter[t] change since j's cluster is still alive
else # unit j belongs to a singleton cluster

j_label = Si_iter[j,t]
last_label = nclus_iter[t]

if j_label < last_label
# here we enter if j_label is not the last label, so we need to
# relabel clusters in order to then remove j's cluster
# eg: units 1 2 3 4 5 j 7 -> units 1 2 3 4 5 j 7
# label 1 1 2 2 2 3 4 label 1 1 2 2 2 4 3

# swap cluster labels...
for jj in 1:n

if Si_iter[jj, t] == last_label
Si_iter[jj, t] = j_label

end
end
Si_iter[j, t] = last_label
# ... and cluster-specific parameters
sig2h_iter[j_label, t], sig2h_iter[last_label, t] =

sig2h_iter[last_label, t], sig2h_iter[j_label, t]↪→

muh_iter[j_label, t], muh_iter[last_label, t] =
muh_iter[last_label, t], muh_iter[j_label, t]↪→

nh[j_label, t] = nh[last_label, t]
nh[last_label, t] = 1

end
# remove the j-th observation and the last cluster (being j in a

singleton)↪→

nh[last_label, t] -= 1
nclus_iter[t] -= 1

end

# setup probability weights towards the sampling of rho_jt
ph .= 0.0
resize!(ph,nclus_iter[t]+1)
copy!(rho_tmp, @view Si_iter[:,t])

# compute nh_tmp (numerosities for each cluster label)
copy!(nh_tmp, @view nh[:,t])
# unit j contribute is already absent from the change we did above
nclus_temp = 0

# we now simulate the unit j to be assigned to one of the existing
clusters...↪→

for k in 1:nclus_iter[t]
rho_tmp[j] = k
indexes = findall(gamma_iter[:,t+1] .== 1) # fast
# we check the compatibility between rho_t^{h=k,R_(t+1)} ...
Si_comp1 = @view rho_tmp[indexes]
Si_comp2 = @view Si_iter[indexes,t+1] # and rho_(t+1)^{R_(t+1)}
rho_comp = compatibility(Si_comp1, Si_comp2)

if rho_comp != 1
ph[k] = log(0) # assignment to cluster k is not compatible

else
# update params for "rho_jt = k" simulation
nh_tmp[k] += 1
nclus_temp = count(a->(a>0), nh_tmp)

lPP .= 0.
for kk in 1:nclus_temp
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aux_idxs = findall(rho_tmp .== kk)
if sPPM

copy!(s1n, @view sp1[aux_idxs])
copy!(s2n, @view sp2[aux_idxs])
spatial_cohesion!(spatial_cohesion_idx, s1n, s2n,

sp_params_struct, true, M_dp, S,1,true,lPP)↪→

end
if cl_xPPM

for p in 1:p_cl
Xn_view = @view Xcl_covariates[aux_idxs,p,t]
if covariate_similarity_idx == 4

covariate_similarity!(covariate_similarity_idx,
Xn_view, cv_params_sim4[p], Rs[p,t],
true,1,true,lPP,cv_weight)

↪→

↪→

else
covariate_similarity!(covariate_similarity_idx,

Xn_view, cv_params, Rs[p,t],
true,1,true,lPP,cv_weight)

↪→

↪→

end
end

end
lPP[1] += log_Mdp + lgamma(nh_tmp[kk])

end

if t==1
ph[k] = loglikelihood(Normal(

muh_iter[k,t] + (lk_xPPM ? dot(view(Xlk_covariates,j,:,t),
beta_iter[t]) : 0),↪→

sqrt(sig2h_iter[k,t])),
Y[j,t]) + lPP[1]

else
ph[k] = loglikelihood(Normal(

muh_iter[k,t] + eta1_iter[j]*Y[j,t-1] + (lk_xPPM ?
dot(view(Xlk_covariates,j,:,t), beta_iter[t]) : 0),↪→

sqrt(sig2h_iter[k,t]*(1-eta1_iter[j]^2))),
Y[j,t]) + lPP[1]

end

# restore params after "rho_jt = k" simulation
nh_tmp[k] -= 1

end
end

# ... plus the case of being assigned to a new (singleton for now)
cluster↪→

k = nclus_iter[t]+1
rho_tmp[j] = k
# declare (for later scope accessibility) the new params here
muh_draw = 0.0; sig2h_draw = 0.0

indexes = findall(gamma_iter[:,t+1] .== 1)
Si_comp1 = @view rho_tmp[indexes]
Si_comp2 = @view Si_iter[indexes,t+1]
rho_comp = compatibility(Si_comp1, Si_comp2)

if rho_comp != 1
ph[k] = log(0) # assignment to a new cluster is not compatible

else
# sample new params for this new cluster
muh_draw = rand(Normal(theta_iter[t], sqrt(tau2_iter[t])))
sig2h_draw = rand(InverseGamma(sig2h_priors[1],sig2h_priors[2]))
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# update params for "rho_jt = k" simulation
nh_tmp[k] += 1
nclus_temp = count(a->(a>0), nh_tmp)

lPP .= 0.
for kk in 1:nclus_temp

aux_idxs = findall(rho_tmp .== kk) # fast
if sPPM

copy!(s1n, @view sp1[aux_idxs])
copy!(s2n, @view sp2[aux_idxs])
spatial_cohesion!(spatial_cohesion_idx, s1n, s2n,

sp_params_struct, true, M_dp, S,1,true,lPP)↪→

end
if cl_xPPM

for p in 1:p_cl
Xn_view = @view Xcl_covariates[aux_idxs,p,t]
if covariate_similarity_idx == 4

covariate_similarity!(covariate_similarity_idx, Xn_view,
cv_params_sim4[p], Rs[p,t],
true,1,true,lPP,cv_weight)

↪→

↪→

else
covariate_similarity!(covariate_similarity_idx, Xn_view,

cv_params, Rs[p,t], true,1,true,lPP,cv_weight)↪→

end
end

end
lPP[1] += log_Mdp + lgamma(nh_tmp[kk])

end

if t==1
ph[k] = loglikelihood(Normal(

muh_draw + (lk_xPPM ? dot(view(Xlk_covariates,j,:,t),
beta_iter[t]) : 0),↪→

sqrt(sig2h_draw)),
Y[j,t]) + lPP[1]

else
ph[k] = loglikelihood(Normal(

muh_draw + eta1_iter[j]*Y[j,t-1] + (lk_xPPM ?
dot(view(Xlk_covariates,j,:,t), beta_iter[t]) : 0),↪→

sqrt(sig2h_draw*(1-eta1_iter[j]^2))),
Y[j,t]) + lPP[1]

end

# restore params after "rho_jt = k" simulation
nh_tmp[k] -= 1

end

# now exponentiate the weights...
max_ph = maximum(ph)
sum_ph = 0.0
for k in eachindex(ph)

# for numerical purposes we subract max_ph
ph[k] = exp(ph[k] - max_ph)
sum_ph += ph[k]

end
# ... and normalize them
ph ./= sum_ph

# now sample the new label Si_iter[j,t]
u = rand(Uniform(0,1))
cph = cumsum(ph)
cph[end] = 1 # fix numerical problems of having sums like 0.999999etc
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new_label = 0
for k in eachindex(ph)

if u <= cph[k]
new_label = k
break

end
end

if new_label <= nclus_iter[t]
# we enter an existing cluster
Si_iter[j, t] = new_label
nh[new_label, t] += 1

else
# we create a new singleton cluster
nclus_iter[t] += 1
cl_new = nclus_iter[t]
Si_iter[j, t] = cl_new
nh[cl_new, t] = 1
muh_iter[cl_new, t] = muh_draw
sig2h_iter[cl_new, t] = sig2h_draw

end

# now we need to relabel after the possible mess created by the
sampling↪→

# eg: (before sampling) (after sampling)
# units j 2 3 4 5 -> units j 2 3 4 5
# labels 1 1 1 2 2 labels 3 1 1 2 2
# the after case has to be relabelled
Si_tmp = @view Si_iter[:,t]

relabel_full!(Si_tmp,n,Si_relab, nh_reorder, old_lab)
# - Si_relab gives the relabelled partition
# - nh_reorder gives the numerosities of the relabelled partition, ie

"nh_reorder[k] = #(units of new cluster k)"↪→

# - old_lab tells "the index in position i (which before was cluster i)
is now called cluster old_lab[i]"↪→

# eg: Original labels (Si): 4 2 1 1 1 3 1 4 5
# Relabeled groups (Si_relab): 1 2 3 3 3 4 3 1 5
# Reordered cluster sizes (nh_reorder): 2 1 4 1 1 0 0 0 0
# Old labels (old_lab): 4 2 1 3 5 0 0 0 0

# now fix everything (morally permute params)
Si_iter[:,t] = Si_relab
# discard the zeros at the end of the auxiliary vectors nh_reorde and

old_lab↪→

copy!(muh_iter_copy, muh_iter)
copy!(sig2h_iter_copy, sig2h_iter)
len = findlast(x -> x != 0, nh_reorder)
for k in 1:nclus_iter[t]

muh_iter[k,t] = muh_iter_copy[old_lab[k],t]
sig2h_iter[k,t] = sig2h_iter_copy[old_lab[k],t]
nh[k,t] = nh_reorder[k]

end

end # for j in movable_units

############# update muh #############
if t==1

for k in 1:nclus_iter[t]
sum_Y = 0.0
for j in 1:n

if Si_iter[j,t]==k
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sum_Y += Y[j,t] - (lk_xPPM ? dot(view(Xlk_covariates,j,:,t),
beta_iter[t]) : 0.0)↪→

end
end
sig2_star = 1 / (1/tau2_iter[t] + nh[k,t]/sig2h_iter[k,t])
mu_star = sig2_star * (theta_iter[t]/tau2_iter[t] +

sum_Y/sig2h_iter[k,t])↪→

muh_iter[k,t] = rand(Normal(mu_star,sqrt(sig2_star)))
end

else # t>1
for k in 1:nclus_iter[t]

sum_Y = 0.0
sum_e2 = 0.0
for j in 1:n

if Si_iter[j,t]==k
aux1 = 1 / (1-eta1_iter[j]^2)
sum_e2 += aux1
sum_Y += (Y[j,t] - eta1_iter[j]*Y[j,t-1] - (lk_xPPM ?

dot(view(Xlk_covariates,j,:,t), beta_iter[t]) : 0.0)) *
aux1

↪→

↪→

end
end
sig2_star = 1 / (1/tau2_iter[t] + sum_e2/sig2h_iter[k,t])
mu_star = sig2_star * (theta_iter[t]/tau2_iter[t] +

sum_Y/sig2h_iter[k,t])↪→

muh_iter[k,t] = rand(Normal(mu_star,sqrt(sig2_star)))
end

end

############# update sigma2h #############
if t==1

for k in 1:nclus_iter[t]
a_star = sig2h_priors[1] + nh[k,t]/2
sum_Y = 0.0
S_kt = findall(Si_iter[:,t] .== k)
for j in S_kt

sum_Y += (Y[j,t] - muh_iter[k,t] - (lk_xPPM ?
dot(view(Xlk_covariates,j,:,t), beta_iter[t]) : 0.0))^2↪→

end

b_star = sig2h_priors[2] + sum_Y/2
sig2h_iter[k,t] = rand(InverseGamma(a_star, b_star))

end

else # t>1
for k in 1:nclus_iter[t]

a_star = sig2h_priors[1] + nh[k,t]/2
sum_Y = 0.0
S_kt = findall(Si_iter[:,t] .== k)
for j in S_kt

sum_Y += (Y[j,t] - muh_iter[k,t] - eta1_iter[j]*Y[j,t-1] -
(lk_xPPM ? dot(view(Xlk_covariates,j,:,t), beta_iter[t]) :
0.0))^2

↪→

↪→

end

b_star = sig2h_priors[2] + sum_Y/2
sig2h_iter[k,t] = rand(InverseGamma(a_star, b_star))

end
end
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############# update beta #############
if lk_xPPM && i>=beta_update_threshold

if t==1
sum_Y = zeros(p_lk)
A_star = I(p_lk)/s2_beta
for j in 1:n

X_jt = @view Xlk_covariates[j,:,t]
sum_Y += (Y[j,t] - muh_iter[Si_iter[j,t],t]) * X_jt /

sig2h_iter[Si_iter[j,t],t]↪→

A_star += (X_jt * X_jt') / sig2h_iter[Si_iter[j,t],t]
end
b_star = beta0/s2_beta + sum_Y
A_star = Symmetric(A_star)
# Symmetric is needed for numerical problems
# but A_star is indeed symm and pos def (by construction) so there

is no problem↪→

beta_iter[t] = rand(MvNormalCanon(b_star, A_star))
# this is the quicker and more accurate method

# old method with the MvNormal and the inversion required
# Am1_star = inv(A_star)
# beta_iter[t] = rand(MvNormal(inv(Symmetric(A_star))*b_star,

inv(Symmetric(A_star))))↪→

else
sum_Y = zeros(p_lk)
A_star = I(p_lk)/s2_beta
for j in 1:n

X_jt = @view Xlk_covariates[j,:,t]
sum_Y += (Y[j,t] - muh_iter[Si_iter[j,t],t] -

eta1_iter[j]*Y[j,t-1]) * X_jt / sig2h_iter[Si_iter[j,t],t]↪→

A_star += (X_jt * X_jt') / sig2h_iter[Si_iter[j,t],t]
end
b_star = beta0/s2_beta + sum_Y
A_star = Symmetric(A_star)
beta_iter[t] = rand(MvNormalCanon(b_star, A_star))

end
end

############# update theta #############
aux1::Float64 = 1 / (lambda2_iter*(1-phi1_iter^2))
kt = nclus_iter[t]
sum_mu=0.0
for k in 1:kt

sum_mu += muh_iter[k,t]
end

if t==1
sig2_post = 1 / (1/lambda2_iter + phi1_iter^2*aux1 + kt/tau2_iter[t])
mu_post = sig2_post * (phi0_iter/lambda2_iter + sum_mu/tau2_iter[t] +

(phi1_iter*(theta_iter[t+1] - (1-phi1_iter)*phi0_iter))*aux1)↪→

theta_iter[t] = rand(Normal(mu_post, sqrt(sig2_post)))

elseif t==T
sig2_post = 1 / (aux1 + kt/tau2_iter[t])
mu_post = sig2_post * (sum_mu/tau2_iter[t] + ((1- phi1_iter)*phi0_iter

+ phi1_iter*theta_iter[t-1])*aux1)↪→

theta_iter[t] = rand(Normal(mu_post, sqrt(sig2_post)))

else # 1<t<T
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sig2_post = 1 / ((1+phi1_iter^2)*aux1 + kt/tau2_iter[t])
mu_post = sig2_post * (sum_mu/tau2_iter[t] +

(phi1_iter*(theta_iter[t-1]+theta_iter[t+1]) +
phi0_iter*(1-phi1_iter)^2)*aux1)

↪→

↪→

theta_iter[t] = rand(Normal(mu_post, sqrt(sig2_post)))
end

############# update tau2 #############
kt = nclus_iter[t]
aux1 = 0.0
for k in 1:kt

aux1 += (muh_iter[k,t] - theta_iter[t])^2
end
a_star_tau = tau2_priors[1] + kt/2
b_star_tau = tau2_priors[2] + aux1/2
tau2_iter[t] = rand(InverseGamma(a_star_tau, b_star_tau))

end # for t in 1:T

############# update eta1 #############
# the input argument eta1_priors[2] is already the std dev
if update_eta1

for j in 1:n
eta1_old = eta1_iter[j]
eta1_new = rand(Normal(eta1_old,eta1_priors[2])) # proposal value

if (-1 <= eta1_new <= 1)
ll_old = 0.0
ll_new = 0.0
for t in 2:T

# likelihood contribution
ll_old += loglikelihood(Normal(

muh_iter[Si_iter[j,t],t] + eta1_old*Y[j,t-1] + (lk_xPPM ?
dot(view(Xlk_covariates,j,:,t), beta_iter[t]) : 0),↪→

sqrt(sig2h_iter[Si_iter[j,t],t]*(1-eta1_old^2))
), Y[j,t])

ll_new += loglikelihood(Normal(
muh_iter[Si_iter[j,t],t] + eta1_new*Y[j,t-1] + (lk_xPPM ?

dot(view(Xlk_covariates,j,:,t), beta_iter[t]) : 0),↪→

sqrt(sig2h_iter[Si_iter[j,t],t]*(1-eta1_new^2))
), Y[j,t])

end
logit_old = aux_logit(eta1_old)
logit_new = aux_logit(eta1_new)

# prior contribution
ll_old += -log(2*eta1_priors[1]) -1/eta1_priors[1]*abs(logit_old)
ll_new += -log(2*eta1_priors[1]) -1/eta1_priors[1]*abs(logit_new)

ll_ratio = ll_new-ll_old
u = rand(Uniform(0,1))
if (ll_ratio > log(u))

eta1_iter[j] = eta1_new # accept the candidate
acceptance_ratio_eta1 += 1

end
end

end
end

############# update alpha #############
if update_alpha
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if time_specific_alpha==false && unit_specific_alpha==false
# a scalar
sumg = sum(@view gamma_iter[:,1:T])
a_star = alpha_priors[1] + sumg
b_star = alpha_priors[2] + n*T - sumg
alpha_iter = rand(Beta(a_star, b_star))

elseif time_specific_alpha==true && unit_specific_alpha==false
# a vector in time
for t in 1:T

sumg = sum(@view gamma_iter[:,t])
a_star = alpha_priors[1] + sumg
b_star = alpha_priors[2] + n - sumg
alpha_iter[t] = rand(Beta(a_star, b_star))

end

elseif time_specific_alpha==false && unit_specific_alpha==true
# a vector in units
for j in 1:n

sumg = sum(@view gamma_iter[j,1:T])
a_star = alpha_priors[1,j] + sumg
b_star = alpha_priors[2,j] + T - sumg
alpha_iter[j] = rand(Beta(a_star, b_star))

end
elseif time_specific_alpha==true && unit_specific_alpha==true

# a matrix
for j in 1:n

for t in 1:T
sumg = gamma_iter[j,t] # nothing to sum in this case
a_star = alpha_priors[1,j] + sumg
b_star = alpha_priors[2,j] + 1 - sumg
alpha_iter[j,t] = rand(Beta(a_star, b_star))

end
end

end
end

############# update phi0 #############
aux1 = 1/lambda2_iter
aux2 = 0.0
for t in 2:T

aux2 += theta_iter[t] - phi1_iter*theta_iter[t-1]
end
sig2_post = 1 / ( 1/phi0_priors[2] + aux1 * (1 +

(T-1)*(1-phi1_iter)/(1+phi1_iter)) )↪→

mu_post = sig2_post * ( phi0_priors[1]/phi0_priors[2] + theta_iter[1]*aux1 +
aux1/(1+phi1_iter)*aux2 )↪→

phi0_iter = rand(Normal(mu_post, sqrt(sig2_post)))

############# update phi1 #############
# the input argument phi1_priors is already the std dev
if update_phi1

phi1_old = phi1_iter
phi1_new = rand(Normal(phi1_old, phi1_priors)) # proposal value

if (-1 <= phi1_new <= 1)
ll_old = 0.0; ll_new = 0.0
for t in 2:T

# likelihood contribution
ll_old += loglikelihood(Normal(

(1-phi1_old)*phi0_iter + phi1_old*theta_iter[t-1],
sqrt(lambda2_iter*(1-phi1_old^2))
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), theta_iter[t])
ll_new += loglikelihood(Normal(

(1-phi1_new)*phi0_iter + phi1_new*theta_iter[t-1],
sqrt(lambda2_iter*(1-phi1_new^2))
), theta_iter[t])

end

# prior contribution
ll_old += loglikelihood(Uniform(-1,1), phi1_old)
ll_new += loglikelihood(Uniform(-1,1), phi1_new)

ll_ratio = ll_new-ll_old
u = rand(Uniform(0,1))
if (ll_ratio > log(u))

phi1_iter = phi1_new # accept the candidate
acceptance_ratio_phi1 += 1

end
end

end

############# update lambda2 #############
aux1 = 0.0
for t in 2:T

aux1 += (theta_iter[t] - (1-phi1_iter)*phi0_iter -
phi1_iter*theta_iter[t-1])^2↪→

end
a_star_lambda2 = lambda2_priors[1] + T/2
b_star_lambda2 = lambda2_priors[2] + ((theta_iter[1] - phi0_iter)^2 + aux1) /

2↪→

lambda2_iter = rand(InverseGamma(a_star_lambda2,b_star_lambda2))

############# save MCMC iterates #############
if i>burnin && i%thin==0

Si_out[:,:,i_out] = Si_iter[:,1:T]
gamma_out[:,:,i_out] = gamma_iter[:,1:T]
if time_specific_alpha==false && unit_specific_alpha==false

# for each iterate, a scalar
alpha_out[i_out] = alpha_iter

elseif time_specific_alpha==true && unit_specific_alpha==false
# for each iterate, a vector in time
alpha_out[:,i_out] = alpha_iter[1:T]

elseif time_specific_alpha==false && unit_specific_alpha==true
# for each iterate, a vector in units
alpha_out[:,i_out] = alpha_iter

elseif time_specific_alpha==true && unit_specific_alpha==true
# for each iterate, a matrix
alpha_out[:,:,i_out] = alpha_iter[:,1:T]

end
for t in 1:T

for j in 1:n
sigma2h_out[j,t,i_out] = sig2h_iter[Si_iter[j,t],t]
muh_out[j,t,i_out] = muh_iter[Si_iter[j,t],t]

end
end
eta1_out[:,i_out] = eta1_iter
if lk_xPPM

for t in 1:T
beta_out[t,:,i_out] = beta_iter[t]

end
end
theta_out[:,i_out] = theta_iter[1:T]
tau2_out[:,i_out] = tau2_iter[1:T]
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phi0_out[i_out] = phi0_iter
phi1_out[i_out] = phi1_iter
lambda2_out[i_out] = lambda2_iter

############# save fitted values and metrics #############
for j in 1:n

for t in 1:T
muh_jt = muh_iter[Si_iter[j,t],t]
sig2h_jt = sig2h_iter[Si_iter[j,t],t]
X_lk_term = lk_xPPM ? dot(view(Xlk_covariates,j,:,t), beta_iter[t])

: 0.0↪→

if t==1
llike[j,t,i_out] = logpdf(Normal(

muh_jt + X_lk_term,
sqrt(sig2h_jt)
), Y[j,t])

fitted[j,t,i_out] = muh_jt + X_lk_term
else # t>1

llike[j,t,i_out] = logpdf(Normal(
muh_jt + eta1_iter[j]*Y[j,t-1] + X_lk_term,
sqrt(sig2h_jt*(1-eta1_iter[j]^2))
), Y[j,t])

fitted[j,t,i_out] = muh_jt + eta1_iter[j]*Y[j,t-1] + X_lk_term
end

mean_likelhd[j,t] += exp(llike[j,t,i_out])
mean_loglikelhd[j,t] += llike[j,t,i_out]
CPO[j,t] += exp(-llike[j,t,i_out])

end
end

i_out += 1
end

next!(progresso)

end # for i in 1:draws

println("\ndone!")
t_end = now()
println("Elapsed time: ",

Dates.canonicalize(Dates.CompoundPeriod(t_end-t_start)))↪→

############# compute LPML and WAIC #############
for j in 1:n

for t in 1:T
LPML += log(CPO[j,t])

end
end
LPML -= n*T*log(nout) # scaling factor
LPML = -LPML # fix sign
println("LPML: ", LPML, " (the higher the better)")

# adjust mean variables
mean_likelhd ./= nout
mean_loglikelhd./= nout
for j in 1:n

for t in 1:T
WAIC += 2*mean_loglikelhd[j,t] - log(mean_likelhd[j,t])

end
end
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WAIC *= -2
println("WAIC: ", WAIC, " (the lower the better)")

if update_eta1 @printf "acceptance ratio eta1: %.2f%% \n"
acceptance_ratio_eta1/(n*draws) *100 end↪→

if update_phi1 @printf "acceptance ratio phi1: %.2f%% "
acceptance_ratio_phi1/draws*100 end↪→

println()

if perform_diagnostics
chn = Chains(

hcat(lambda2_out,phi0_out,tau2_out',theta_out',eta1_out',alpha_out'),
["lambda2","phi0",
[string("tau2_t", i) for i in 1:T]...,
[string("theta_t", i) for i in 1:T]...,
[string("eta1_j", i) for i in 1:n]...,
[string("alpha_t", i) for i in 1:T]...,
]

)
ss = DataFrame(summarystats(chn))
println("\nDiagnostics:")
@show ss[!,[1,4,5,6,7]];
if logging CSV.write(log_file,ss[!,[1,4,5,6,7]]) end

end

close(log_file)

if simple_return
return Si_out, LPML, WAIC

else
return Si_out, Int.(gamma_out), alpha_out, sigma2h_out, muh_out, include_eta1

? eta1_out : NaN,↪→

lk_xPPM ? beta_out : NaN, theta_out, tau2_out, phi0_out, include_phi1 ?
phi1_out : NaN, lambda2_out,↪→

fitted, llike, LPML, WAIC
end

B.2 Interface

We now provide some technical details regarding the overall implementation
design. The fitting algorithm was written in Julia, but its primary intended use is
within the R programming environment. This choice reflects R’s current status as
the leading language for statistical analysis.

To achieve this integration, we relied on the JuliaConnectoR library (Lenz
et al., 2022) in R, which enables interaction between the two languages. This library
allows to load the Julia project JDRPM, which contains the functionalities, including
code and package dependencies, required for the implementation of the JDRPM
algorithm. Through JuliaConnectoR we can pass data and parameters from R
to Julia, run the fitting algorithm, and convert the output back into R structures.
The design of this workflow is illustrated in Listing 4.

Listing 4: Overview of the R and Julia integration process for running the JDRPM algorithm.
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############# Requirements #############
# install the required pacakge
install.packages("JuliaConnectoR")

############# Setup #############
# load the package
library(JuliaConnectoR)
# check it returns TRUE
juliaSetupOk()

# load the Package manager on Julia
juliaEval("using Pkg")
# enter into the JDRPM project
juliaEval("Pkg.activate(\"<path/to/where/you/stored/JDRPM>\")")

# downloads and install, only once, all the depdendencies
juliaEval("Pkg.instantiate()")
# now, as a check, this should print the list of packages that JDRPM uses,
# such as Distributions, Statistics, LinearAlgebra, SpecialFunctions, etc.
juliaEval("Pkg.status()")

# locate the "main" file
module = normalizePath("<path/to/where/you/stored/JDRPM>/src/JDRPM.jl")
# load the "main" file into a callable R object
module_JDRPM = juliaImport(juliaCall("include", module))

############# Fit #############
# perform the fit
out = module_JDRPM$MCMC_fit(...)

# convert the output to R structures
rout = juliaGet(out)
names(rout) = c("Si","gamma","alpha", "sigma2h", "muh", "eta1","beta","theta",

"tau2", "phi0", "phi1","lambda2","fitted","llike","lpml","waic")↪→

# and reshape it to uniform to the DRPM output form
rout$Si = aperm(rout$Si, c(2, 1, 3))
rout$gamma = aperm(rout$gamma, c(2, 1, 3))
rout$sigma2h = aperm(rout$sigma2h, c(2, 1, 3))
rout$muh = aperm(rout$muh, c(2, 1, 3))
rout$fitted = aperm(rout$fitted, c(2, 1, 3))
rout$llike = aperm(rout$llike, c(2, 1, 3))
rout$alpha = aperm(rout$alpha, c(2, 1))
rout$theta = aperm(rout$theta, c(2, 1))
rout$tau2 = aperm(rout$tau2, c(2, 1))
rout$eta1 = aperm(rout$eta1, c(2, 1))
rout$phi0 = matrix(rout$phi0, ncol = 1)
rout$phi1 = matrix(rout$phi1, ncol = 1)
rout$lambda2 = matrix(rout$lambda2, ncol = 1)
# this reshape works in the case of full model fit, but in the case of special
# fitting options (e.g. unit_specific_alpha=true) it needs to be adjusted

In terms of the user interface and feedback provided by the function, we aimed
to enhance the friendliness and informativeness compared to the original C im-
plementation. Notable improvements include the ability to perform convergence
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diagnostics, on a subset of the sampled parameters, and the real-time progress
monitoring, which updates every second, to display the estimated remaining time
for completing the fit. These features further exemplify the ease of use inherent in
Julia: they were implemented with just a few additional lines of code, leveraging
the Julia packages MCMCChains (Ge et al., 2018) and ProgressMeter.

Listing 5: Feedback from the JDRPM implementation.

# if verbose=true this initial parameter section is also printed
Parameters:
sig2h ∼ invGamma(0.01, 0.01)
Logit(1/2(eta1+1)) ∼ Laplace(0, 0.9)
tau2 ∼ invGamma(1.9, 0.4)
phi0 ∼ Normal(µ=0.0, σ2=10.0)
lambda2 ∼ invGamma(1.9, 0.4)
alpha ∼ Beta(2.0, 2.0)

- using seed 111.0 -
fitting 110000 total iterates (with burnin=90000, thinning=5)
thus producing 4000 valid iterates in the end

on n=105 subjects
for T=12 time instants

[✓] with space? true (cohesion 3.0)
[✓] with covariates in the likelihood? true (p=6)
[✓] with covariates in the clustering process? true (p=3, similarity 4.0)
[✓] are there missing data in Y? true

2024-10-30 13:50:23
Starting MCMC algorithm
Progress 100% Time: 1:15:45 (41.33 ms/it)

done!
Elapsed time 1 hour, 15 minutes, 45 seconds, 920 milliseconds
LPML: 791.8603234076745 (the higher the better)
WAIC: -1976.7279705951883 (the lower the better)
acceptance ratio eta1: 52.18%
acceptance ratio phi1: 35.04%

# if perform_diagnostics=true this final diagnostics section is also printed
Diagnostics:
ss[!, [1, 4, 5, 6, 7]] = 143×5 DataFrame
Row | parameters mcse ess_bulk ess_tail rhat

| Symbol Float64 Float64 Float64 Float64
---------------------------------------------------------------

1 | lambda2 0.000817173 4243.04 3970.25 0.999769
2 | phi0 0.00218706 3533.95 3675.99 1.00018
3 | tau2_t1 0.00540064 3716.56 3645.99 0.999968

...
14 | tau2_t12 0.00259168 3965.77 3655.55 0.999951
15 | theta_t1 0.00404988 3603.34 3765.78 0.999834

...
26 | theta_t12 0.00337843 3588.83 3907.13 0.999866
27 | eta1_j1 0.0112187 451.588 1107.96 1.00163
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...
131 | eta1_j105 0.00328424 1539.36 2194.83 1.00002
132 | alpha_t1 0.000213087 3774.24 3920.48 1.00044

...
143 | alpha_t12 0.00266005 541.427 1867.54 1.0084

All codes and insights related to JDRPM’s MCMC algorithm implementation,
along with the experiments conducted throughout this work, are available at
https://github.com/federicomor/Tesi/tree/main/src/JDRPM.

https://github.com/federicomor/Tesi/tree/main/src/JDRPM




Appendix C

Further plots

We now present the visualizations of the clusters estimates for the fits analysed
in the experiments of Chapter 3.

101



102 Appendix C. Further plots

−1 0 1 2

−
2

−
1

0
1

2
3

time 1

s_std[1, 1]

s_
st

d[
1,

 2
]

−1 0 1 2

−
2

−
1

0
1

2
3

time 2

s_std[1, 1]
s_

st
d[

1,
 2

]

−1 0 1 2

−
2

−
1

0
1

2
3

time 3

s_std[1, 1]

s_
st

d[
1,

 2
]

−1 0 1 2

−
2

−
1

0
1

2
3

time 4

s_std[1, 1]

s_
st

d[
1,

 2
]

−1 0 1 2

−
2

−
1

0
1

2
3

time 5

s_std[1, 1]

s_
st

d[
1,

 2
]

−1 0 1 2

−
2

−
1

0
1

2
3

time 6

s_std[1, 1]

s_
st

d[
1,

 2
]

−1 0 1 2

−
2

−
1

0
1

2
3

time 7

s_std[1, 1]
s_

st
d[

1,
 2

]

−1 0 1 2

−
2

−
1

0
1

2
3

time 8

s_std[1, 1]

s_
st

d[
1,

 2
]

−1 0 1 2

−
2

−
1

0
1

2
3

time 9

s_std[1, 1]

s_
st

d[
1,

 2
]

−1 0 1 2

−
2

−
1

0
1

2
3

time 10

s_std[1, 1]

s_
st

d[
1,

 2
]

−1 0 1 2

−
2

−
1

0
1

2
3

time 11

s_std[1, 1]

s_
st

d[
1,

 2
]

−1 0 1 2

−
2

−
1

0
1

2
3

time 12

s_std[1, 1]
s_

st
d[

1,
 2

]

CDRPM target + space

Figure C.1: Clusters estimates produced by CDRPM fit, in the real-world scenario.
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Figure C.2: Clusters estimates produced by JDRPM fit, in the real-world scenario.
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Figure C.3: Clusters estimates produced by JDRPM fit, in the real-world scenario, with
covariates in the likelihood.

−1 0 1 2

−
2

−
1

0
1

2
3

time 1

s_std[1, 1]

s_
st

d[
1,

 2
]

−1 0 1 2

−
2

−
1

0
1

2
3

time 2

s_std[1, 1]

s_
st

d[
1,

 2
]

−1 0 1 2

−
2

−
1

0
1

2
3

time 3

s_std[1, 1]

s_
st

d[
1,

 2
]

−1 0 1 2

−
2

−
1

0
1

2
3

time 4

s_std[1, 1]

s_
st

d[
1,

 2
]

−1 0 1 2

−
2

−
1

0
1

2
3

time 5

s_std[1, 1]

s_
st

d[
1,

 2
]

−1 0 1 2

−
2

−
1

0
1

2
3

time 6

s_std[1, 1]

s_
st

d[
1,

 2
]

−1 0 1 2

−
2

−
1

0
1

2
3

time 7

s_std[1, 1]

s_
st

d[
1,

 2
]

−1 0 1 2

−
2

−
1

0
1

2
3

time 8

s_std[1, 1]

s_
st

d[
1,

 2
]

−1 0 1 2

−
2

−
1

0
1

2
3

time 9

s_std[1, 1]

s_
st

d[
1,

 2
]

−1 0 1 2

−
2

−
1

0
1

2
3

time 10

s_std[1, 1]

s_
st

d[
1,

 2
]

−1 0 1 2

−
2

−
1

0
1

2
3

time 11

s_std[1, 1]

s_
st

d[
1,

 2
]

−1 0 1 2

−
2

−
1

0
1

2
3

time 12

s_std[1, 1]

s_
st

d[
1,

 2
]

JDRPM target + space + Xcl

Figure C.4: Clusters estimates produced by JDRPM fit, in the real-world scenario, with
covariates in the prior.
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