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What is the thesis about?

The Dependent Random Partition Model from (Page et al., 2022) is a
Bayesian spatio-temporal clustering model which directly models the
temporal dependencies in the sequence of clusters over time.

Currently, the model’s implementation
• produces up to spatially-informed clusters

→ I additionally introduced covariates information
• only accepts complete datasets

→ I made it work with missing values in the target variable
• has quite slow execution times (especially on large datasets)

→ I developed a brand-new and more efficient implementation in
Julia rather than C
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Description of the problem What is the DRPM

Clustering

The Dependent Random Partition Model from (Page et al., 2022) is a
Bayesian spatio-temporal clustering model which directly models the
temporal dependencies in the sequence of clusters over time.

Clustering is a fundamental technique of unsupervised learning where a set
of data points has to be divided into homogeneous groups of units which
exhibit a similar behaviour.
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Description of the problem What is the DRPM

Why going Bayesian?

The Dependent Random Partition Model from (Page et al., 2022) is a
Bayesian spatio-temporal clustering model which directly models the
temporal dependencies in the sequence of clusters over time.

Bayesian models incorporate prior information on the model parameters
and allow to assess uncertainty when performing inference on the results.
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Description of the problem What is the DRPM

A bit of (spatio-temporal) context

The Dependent Random Partition Model from (Page et al., 2022) is a
Bayesian spatio-temporal clustering model which directly models the
temporal dependencies in the sequence of clusters over time.

In spatio-temporal datasets, observations are collected over time and
across various spatial locations. So we will have n units that have to be
clustered at all time instants t = 1, . . . , T .
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Description of the problem What is the DRPM

Why should we care about temporal dependencies?

The Dependent Random Partition Model from (Page et al., 2022) is a
Bayesian spatio-temporal clustering model which directly models the
temporal dependencies in the sequence of clusters over time.

This allows to derive a more gentle and interpretable evolution of clusters.
Lagged ARI values − DRPM
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Lagged ARI values − sPPM
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Figure: ARI(ρ̂t , ρ̂t+k) computed for DRPM (left) and for a competitor model (right).

7



Description of the problem What is the DRPM

Why should we care about temporal dependencies?

The Dependent Random Partition Model from (Page et al., 2022) is a
Bayesian spatio-temporal clustering model which directly models the
temporal dependencies in the sequence of clusters over time.

This allows to derive a more gentle and interpretable evolution of clusters.
Lagged ARI values − DRPM
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Lagged ARI values − Curve PPMx
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Figure: ARI(ρ̂t , ρ̂t+k) computed for DRPM (left) and for a competitor model (right).

8



Description of the problem What is the DRPM

Modelling the temporal dependence (Page et al., 2022)

To introduce temporal dependence in a collection of partitions, Page et al.
(2022) assumed a first-order Markovian structure, leading to

P(ρ1, . . . , ρT ) = P(ρT |ρT−1) · · · P(ρ2|ρ1)P(ρ1)

where P(ρ1) is an exchangeable partition probability function (EPPF).
Page et al. (2022) chose the EPPF induced by the Dirichlet Process

P(ρ1) ∝
k1∏

j=1
M · (|Sj1| − 1)!
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Description of the problem What is the DRPM

Modelling the temporal dependence (Page et al., 2022)

To characterize the other terms P(ρt |ρt−1), the following auxiliary
variables need to be introduced. For all units i = 1, . . . , n we define

γit =
{

1 if unit i is not reallocated when moving from time t − 1 to t
0 otherwise (namely, the unit is reallocated)

These parameters model the similarity between ρt−1 and ρt :
• if ρt−1 and ρt are highly dependent

=⇒ their cluster configurations will change minimally
=⇒ the majority of γit will be 1

• if ρt−1 and ρt exhibit low dependence
=⇒ their cluster configurations will change significantly
=⇒ the majority of γit will be 0
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Description of the problem What is the DRPM

Modelling the temporal dependence (Page et al., 2022)

Page et al. (2022) assumed γit
ind∼ Ber(αt), where αt ∈ [0, 1] serves as

a temporal dependence parameter, spanning from perfect temporal
correlation (αt = 0) to full independence (αt = 1).

In this way the formulation of the joint model becomes

P(γ1, ρ1, . . . , γT , ρT ) = P(ρT |γT , ρT−1)P(γT ) × · · ·
× P(ρ2|γ2, ρ1)P(γ2)P(ρ1)

Once the model for the partition is specified, there is considerable
flexibility in how to define the remainder of the Bayesian model.
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Description of the problem What is the DRPM

The DRPM (Page et al., 2022)

DRPM formulation according to Page et al. (2022) (henceforth, CDRPM,
with C as the C language used for the model’s implementation).

Yit |Yit−1, µ?
t , σ2?

t , η, ct
ind∼ N (µ?

cit t + η1iYit−1, σ2?
cit t(1 − η2

1i))

Yi1
ind∼ N (µ?

ci11, σ2?
ci11)

ξi = Logit( 1
2 (η1i + 1)) ind∼ Laplace(a, b)

(µ?
jt , σ?

jt)
ind∼ N (ϑt , τ 2

t ) × U(0, Aσ)

ϑt |ϑt−1
ind∼ N ((1 − ϕ1)ϕ0 + ϕ1ϑt−1, λ2(1 − ϕ2

1))

(ϑ1, τt)
iid∼ N (ϕ0, λ2) × U(0, Aτ )

(ϕ0, ϕ1, λ) ∼ N (m0, s2
0 ) × U(−1, 1) × U(0, Aλ)

{ct , . . . , cT } ∼ tRPM(α, M) with αt
iid∼ Beta(aα, bα)
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Description of the problem How did we improve it

Our generalized model
DRPM formulation according to our generalization (henceforth, JDRPM,
with J as the Julia language used for the model’s implementation).

Yit |Yit−1, µ?
t , σ2?

t , η, ct
ind∼ N (µ?

cit t + η1iYit−1 + xT
it βt , σ2?

cit t(1 − η2
1i))

Yi1
ind∼ N (µ?

ci11 + xT
i1β1, σ2?

ci11)

βt
ind∼ Np(b, s2I)

ξi = Logit( 1
2 (η1i + 1)) ind∼ Laplace(a, b)

(µ?
jt , σ2?

jt ) ind∼ N (ϑt , τ 2
t ) × invGamma(aσ, bσ)

ϑt |ϑt−1
ind∼ N ((1 − ϕ1)ϕ0 + ϕ1ϑt−1, λ2(1 − ϕ2

1))

(ϑ1, τ 2
t ) iid∼ N (ϕ0, λ2) × invGamma(aτ , bτ )

(ϕ0, ϕ1, λ2) ∼ N (m0, s2
0 ) × U(−1, 1) × invGamma(aλ, bλ)

{ct , . . . , cT } ∼ tRPM(α, M) with αt
iid∼ Beta(aα, bα)
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Description of the problem How did we improve it

Our updated formulation
1) We inserted a regression term in the likelihood and changed the prior
distributions of the variance parameters

Yit |Yit−1, µ?
t , σ2?

t , η, ct
ind∼ N (µ?

cit t + η1iYit−1 + xT
it βt , σ2?

cit t(1 − η2
1i))

Yi1
ind∼ N (µ?

ci11 + xT
i1β1, σ2?

ci11)

βt
ind∼ Np(b, s2I)

ξi = Logit( 1
2 (η1i + 1)) ind∼ Laplace(a, b)

(µ?
jt , σ2?

jt ) ind∼ N (ϑt , τ 2
t ) × invGamma(aσ, bσ)

ϑt |ϑt−1
ind∼ N ((1 − ϕ1)ϕ0 + ϕ1ϑt−1, λ2(1 − ϕ2

1))

(ϑ1, τ 2
t ) iid∼ N (ϕ0, λ2) × invGamma(aτ , bτ )

(ϕ0, ϕ1, λ2) ∼ N (m0, s2
0 ) × U(−1, 1) × invGamma(aλ, bλ)

{ct , . . . , cT } ∼ tRPM(α, M) with αt
iid∼ Beta(aα, bα)
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Description of the problem How did we improve it

Our updated formulation

The regressor term βt provides more flexibility to the model formulation
through the insertion of covariates into the likelihood.
Prior: βt ∼ Np(b, s2I)
Update rule:

for t = 1: f (βt |−) ∝ kernel of a N Canon(h(post), J(post)) with

h(post) =

(
b
s2 +

n∑
i=1

(Yit − µ?
cit t)xit

σ2?
cit t

)
J(post) =

(
1
s2 I +

n∑
i=1

xitxT
it

σ2?
cit t

)
for t > 1: f (βt |−) ∝ kernel of a N Canon(h(post), J(post)) with

h(post) =

(
b
s2 +

n∑
i=1

(Yit − µ?
cit t − η1iYit−1)xit

σ2?
cit t

)
J(post) =

(
1
s2 I +

n∑
i=1

xitxT
it

σ2?
cit t

)

where N Canon(h, J) is the canonical formulation of the N (µ, Σ), with
h = Σ−1µ and J = Σ−1.
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Description of the problem How did we improve it

Our updated formulation

The choice of the inverse gamma distribution for the variance parameters
recovers conjugacy within the model.
Prior: σ2?

jt ∼ invGamma(aσ, bσ)
Update rule:

for t = 1: f (σ2?
jt |−) ∝ kernel of a invGamma(aσ(post), bσ(post)) with

aτ(post) = aσ + |Sjt |
2 bτ(post) = bσ + 1

2
∑
i∈Sjt

(Yit − µ?
jt − xT

it βt)2

for t > 1: f (σ2?
jt |−) ∝ kernel of a invGamma(aσ(post), bσ(post)) with

aτ(post) = aσ + |Sjt |
2 bτ(post) = bσ + 1

2
∑
i∈Sjt

(Yit − µ?
jt − η1iYit−1 − xT

it βt)2

Similar derivations apply to τ2
t and λ2.
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Description of the problem How did we improve it

Additional information level

2) We introduced covariates information inside the prior for the partition.

Page et al. (2022) introduced spatial information by moving to a PPM
structure with a cohesion function C(Sjt , s?

jt |M, S), which measures the
compactness of the spatial coordinates s?

jt .

P(ρt |M, S) ∝
kt∏

j=1
C(Sjt , s?

jt |M, S)

We implemented the spatial cohesion functions proposed in Page et al.
(2016).
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Description of the problem How did we improve it

Additional information level

2) We introduced covariates information inside the prior for the partition.

In a similar way, we inserted covariates information by introducing a term
composed by a similarity function g(Sjt , x?

jtr |C), which measures the
similarity of the r -th covariate values x?

jtr .

P(ρt |M, S, C) ∝
kt∏

j=1
C(Sjt , s?

jt |M, S)
( p∏

r=1
g(Sjt , x?

jtr |C)
)

We implemented the covariates similarity functions proposed in Page et al.
(2018).

18



Description of the problem How did we improve it

Missing data

3) We let the model accept missing data in the target variable through the
derivation of an update rule for the missing Yit ’s.

for t = 1: f (Yit |−) ∝ N (µYit (post), σ2
Yit (post)) with

σ2
Yit (post) = 1

/( 1
σ2?

cit t
+ η2

1i
2σ2?

cit+1t+1(1 − η2
1i)

)
µYit (post) = σ2

Yit (post)

(
µ?

cit t + xT
it βt

σ2?
cit t

+
η1i(Yit+1 − µ?

cit+1t+1 − xT
it+1βt+1)

σ2?
cit+1t+1(1 − η2

1i)

)
for 1 < t < T : f (Yit |−) ∝ N (µYit (post), σ2

Yit (post)) with

σ2
Yit (post) =

(
1 − η2

1i
)/( 1

σ2?
cit t

+ η2
1i

σ2?
cit+1t+1

)
µYit (post) = σ2

Yit (post)

(
µ?

cit t + η1iYit−1 + xT
it βt

σ2?
cit t(1 − η2

1i)
+

η1i(Yit+1 − µ?
cit+1t+1 − xT

it+1βt+1)
σ2?

cit+1t+1(1 − η2
1i)

)
for t = T : f (Yit |−) is just the likelihood of Yit
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Description of the problem How did we improve it

New implementation

4) We developed a brand-new and more efficient implementation for the
updated MCMC algorithm which we now describe in the following section.

original MCMC algorithm
of Page et al. (2022)

our updates
new MCMC
algorithm
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Implementation and optimizations

Why Julia?

• combines the ease and expressiveness of high-level languages (e.g.
R, python, matlab) with the efficiency and performance of low-level
languages (e.g. C, C++, Fortran)

• code can be tested interactively, as with interpreted languages. . .
. . . but performance is guaranteed through just-in-time compilation

• linear algebra computations are optimized through BLAS and
LAPACK libraries

• vast collection of optimized and complete scientific packages, e.g.
Statistics, Distributions (Besançon et al., 2021), and
BenchmarkTools (Chen et al., 2016)
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Implementation and optimizations

Spoiler alert

Using Julia, we obtained improved computational performance compared
to the original C implementation of Page et al. (2022), with peaks up to a
2x speedup.

This performance gain was achieved through several optimizations steps.
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Implementation and optimizations Optimizations

Optimizing covariates similarities

Problem: optimizing covariates similarity g4.

function similarity4(X_jt::AbstractVector{<:Real}, mu_c::Real,
lambda_c::Real, a_c::Real, b_c::Real, lg::Bool)↪→

n = length(X_jt); nm = n/2
xbar = mean(X_jt)
aux2 = 0.
for i in eachindex(X_jt)

aux2 += X_jt[i]^2
end
aux1 = b_c + 0.5 * (aux2 - (n*xbar + lambda_c*mu_c)^2/(n+lambda_c) +

lambda_c*mu_c^2 )↪→

out = -nm*log2pi + 0.5*log(lambda_c/(lambda_c+n)) + lgamma(a_c+nm) -
lgamma(a_c) + a_c*log(b_c) + (-a_c-nm)*log(aux1)↪→

return lg ? out : exp(out)
end
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Implementation and optimizations Optimizations

Optimizing covariates similarities

Problem: optimizing covariates similarity g4.
Solution: applying some optimizing macros on the inner loop.
function similarity4(X_jt::AbstractVector{<:Real}, mu_c::Real,

lambda_c::Real, a_c::Real, b_c::Real, lg::Bool)↪→

n = length(X_jt); nm = n/2
xbar = mean(X_jt)
aux2 = 0.
@inbounds @fastmath @simd for i in eachindex(X_jt)

aux2 += X_jt[i]^2
end
aux1 = b_c + 0.5 * (aux2 - (n*xbar + lambda_c*mu_c)^2/(n+lambda_c) +

lambda_c*mu_c^2 )↪→

out = -nm*log2pi + 0.5*log(lambda_c/(lambda_c+n)) + lgamma(a_c+nm) -
lgamma(a_c) + a_c*log(b_c) + (-a_c-nm)*log(aux1)↪→

return lg ? out : exp(out)
end
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Implementation and optimizations Optimizations

Optimizing covariates similarities
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Analysis of the models

Analysis of the models

To evaluate the numerical performance of both algorithms, we will analyse
posterior samples and clusters estimates in two scenarios

1 on a synthetic dataset, with kind-of-randomly generated data, that
includes only the response variable

2 on a real-world spatio-temporal dataset about air pollution in
Lombardy, derived from the AgrImOnIA project (Fassò et al., 2023)

We will start with an assessment question about our implementation,
followed by a specific analysis of the upgrades brought by our work.
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Analysis of the models Comparing the two algorithms

Correctness check

Is our generalized model working as expected?

We fitted both the original and our updated models under identical
conditions: same datasets, same MCMC setup (burnin, thinning, number
of iterations), and same hyperparameters.
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Analysis of the models Comparing the two algorithms

Correctness check

Is our generalized model working as expected? yes!
Everything works nicely, JDRPM produces similar results to CDRPM.

Lagged ARI values − model C
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Figure: Lagged ARI values of the two models, fitted on simulated data.
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Analysis of the models Comparing the two algorithms

Correctness check

Is our generalized model working as expected? yes!
Everything works nicely, JDRPM produces similar results to CDRPM.

Lagged ARI values − model C
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Figure: Lagged ARI values of the two models, fitted on real-world data.
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Analysis of the models Comparing the two algorithms

Correctness check

Is our generalized model working as expected? yes!
Under identical testing conditions, the models are morally equivalent.
. . . but our implementation is faster

simulated data MSE mean MSE median execution time

CDRPM 1.6221 1.5823 19s (3.8 ms/it)
JDRPM 1.2634 1.2034 13s (2.6 ms/it)

real-world data MSE mean MSE median execution time

CDRPM 0.0142 0.0149 1h38m (54 ms/it)
JDRPM 0.0131 0.0138 48m (26 ms/it)
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Analysis of the models Performance with missing values

Performance with missing values
How will our generalized model perform in presence of missing values?

We randomly removed 10% of the target values Yit from the dataset, so
that they would become our “missing values”, and then repeated the fits
in both scenarios.
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Analysis of the models Performance with missing values

Performance with missing values
How will our generalized model perform in presence of missing values?
very well! All the true values lie within the credible intervals.
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Figure: 95% CIs of the fitted estimates for the missing Yit ’s, on simulated data.
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Analysis of the models Performance with missing values

Performance with missing values
How will our generalized model perform in presence of missing values?
quite well! 74% of the true values lie within the credible intervals.
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Figure: 95% CIs of the fitted estimates for the missing Yit ’s, on real-world data.

33



Analysis of the models Performance with missing values

Performance with missing values
How will our generalized model perform in presence of missing values?
Also the temporal trend and the clusters estimates remain very similar.

Lagged ARI values − model J (NA data)
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Lagged ARI values − model J (full data)
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Figure: Lagged ARI values of the two JDRPM fits, on simulated data.
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Analysis of the models Performance with missing values

Performance with missing values
How will our generalized model perform in presence of missing values?
Also the temporal trend and the clusters estimates remain very similar.

Lagged ARI values − model J (NA data)
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Figure: Lagged ARI values of the two JDRPM fits, on real-world data.
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Analysis of the models Effects of the covariates

Covariates in the likelihood

What is the effect of including covariates in the likelihood?

We repeated the missing values analysis, this time including covariates
in the likelihood.
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Analysis of the models Effects of the covariates

Covariates in the likelihood

What is the effect of including covariates in the likelihood?
They improve the fitted estimates of Yit and of the model parameters.

(JDRPM) MSE mean MSE median LPML WAIC exec. time

full data 0.0131 0.0138 624.91 -1898.05 48m
NA data 0.0160 0.0170 502.86 -1793.64 43m

NA data + Xlk 0.0127 0.0130 625.81 -1902.74 58m
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Analysis of the models Effects of the covariates

Covariates in the likelihood

What is the effect of including covariates in the likelihood?
They provide insights about the included covariates.
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Analysis of the models Effects of the covariates

Covariates in the prior

What is the effect of including covariates in the prior?

We repeated the real-world analysis, this time including covariates
in the prior.
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Analysis of the models Effects of the covariates

Covariates in the prior

What is the effect of including covariates in the prior?
They improve the quality and interpretability of the results.

MSE mean MSE median LPML WAIC exec. time

CDRPM 0.0142 0.0149 694.81 -1768.42 1h38m
JDRPM 0.0131 0.0138 624.91 -1898.05 48m

JDRPM + Xcl 0.0126 0.0135 677.71 -1969.76 1h20m
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Analysis of the models Effects of the covariates

Covariates in the prior

What is the effect of including covariates in the prior?
They improve the quality and interpretability of the results.
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Figure: JDRPM spatially-informed fit with covariates in the prior.
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Analysis of the models Effects of the covariates

Covariates in the prior

What is the effect of including covariates in the prior?
They improve the quality and interpretability of the results.
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Figure: JDRPM spatially-informed fit.
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Analysis of the models Effects of the covariates

Covariates in the prior

What is the effect of including covariates in the prior?
They improve the quality and interpretability of the results.
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Figure: CDRPM spatially-informed fit.
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Analysis of the models Scaling performances

Scaling performances
By how much is our implementation faster?

We fitted both models across a “mesh” of dataset sizes, with n and T
ranging through {10, 50, 100, 250} and with information layers inserted
incrementally on top of each other.
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Analysis of the models Scaling performances

Scaling performances
By how much is our implementation faster? By a lot
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Figure: Slowdown factors computed for all fits, relative to JDPRM spatially-informed fit.
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Analysis of the models Scaling performances

Scaling performances
By how much is our implementation faster? Hardware is the limit
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Figure: Slowdown factors computed for all fits, relative to JDPRM spatially-informed fit.
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Conclusion

Strengths of our work

Our generalization of the DRPM model
• will allow more flexibility in the real-world researches, thanks to

the introduction of covariates and the handling of missing values
• despite the increased complexity, provides more efficiency in the

implementation, thus significantly reducing execution times
• is implemented in Julia, facilitating easier code variations and

future developments
• is already ready-to-use on R

(all the Julia and R codes of the thesis are available at https:
//github.com/federicomor/Tesi/tree/main/src/JDRPM)

47

https://github.com/federicomor/Tesi/tree/main/src/JDRPM
https://github.com/federicomor/Tesi/tree/main/src/JDRPM


Conclusion

Drawbacks of our work

• the estimates of the model parameters will be sensible to the choice
of hyperparameters, covariates similarities, spatial cohesions, etc.
However this is a characteristic of all complex Bayesian models.

• reaching an appropriate balance between spatial and covariates
information may require empirical testing.
However, the Julia implementation already provides an optional
argument, cv_weight (defaulted to 1), which allows to scale the
contribute of covariates similarities.
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