P681
projecteuler.net

Maximal Area

ℹ️Published on Sunday, 29th September 2019, 07:00 am; Solved by 250;
Difficulty rating: 50%

Given positive integers $a \le b \le c \le d$, it may be possible to form quadrilaterals with edge lengths $a,b,c,d$ (in any order). When this is the case, let $M(a,b,c,d)$ denote the maximal area of such a quadrilateral.
For example, $M(2,2,3,3)=6$, attained e.g. by a $2\times 3$ rectangle.

Let $SP(n)$ be the sum of $a+b+c+d$ over all choices $a \le b \le c \le d$ for which $M(a,b,c,d)$ is a positive integer not exceeding $n$.
$SP(10)=186$ and $SP(100)=23238$.

Find $SP(1\,000\,000)$.



Soluzione

Last modified: May 01, 2025. Website built with Franklin.jl and the lovely Julia programming language.