P672
projecteuler.net

One More One

ℹ️Published on Sunday, 26th May 2019, 04:00 am; Solved by 292;
Difficulty rating: 50%

Consider the following process that can be applied recursively to any positive integer $n$:

  • if $n = 1$ do nothing and the process stops,
  • if $n$ is divisible by $7$ divide it by $7$,
  • otherwise add $1$.

Define $g(n)$ to be the number of $1$'s that must be added before the process ends. For example:

$125\xrightarrow{\scriptsize{+1} } 126\xrightarrow{\scriptsize{\div 7} } 18\xrightarrow{\scriptsize{+1} } 19\xrightarrow{\scriptsize{+1} } 20\xrightarrow{\scriptsize{+1} } 21\xrightarrow{\scriptsize{\div 7} } 3\xrightarrow{\scriptsize{+1} } 4\xrightarrow{\scriptsize{+1} } 5\xrightarrow{\scriptsize{+1} } 6\xrightarrow{\scriptsize{+1} } 7\xrightarrow{\scriptsize{\div 7} } 1$.

Eight $1$'s are added so $g(125) = 8$. Similarly $g(1000) = 9$ and $g(10000) = 21$.

Define $S(N) = \sum_{n=1}^N g(n)$ and $H(K) = S\left(\frac{7^K-1}{11}\right)$. You are given $H(10) = 690409338$.

Find $H(10^9)$ modulo $1\,117\,117\,717$.



Soluzione

Last modified: May 27, 2025. Website built with Franklin.jl and the lovely Julia programming language.