P627
projecteuler.net

Counting Products

ℹ️Published on Saturday, 19th May 2018, 10:00 pm; Solved by 260;
Difficulty rating: 60%

Consider the set $S$ of all possible products of $n$ positive integers not exceeding $m$, that is
$S=\{ x_1x_2\cdots x_n \mid 1 \le x_1, x_2, \dots, x_n \le m \}$.
Let $F(m,n)$ be the number of the distinct elements of the set $S$.
For example, $F(9, 2) = 36$ and $F(30,2)=308$.

Find $F(30, 10001) \bmod 1\,000\,000\,007$.



Soluzione

Last modified: May 01, 2025. Website built with Franklin.jl and the lovely Julia programming language.