
Constrained Sums
Let $S(n, k, b)$ represent the number of valid solutions to $x_1 + x_2 + \cdots + x_k \le n$, where $0 \le x_m \le b^m$ for all $1 \le m \le k$.
For example, $S(14,3,2) = 135$, $S(200,5,3) = 12949440$, and $S(1000,10,5) \bmod 1\,000\,000\,007 = 624839075$.
Find $(\sum_{10 \le k \le 15} S(10^k, k, k)) \bmod 1\,000\,000\,007$.