
First Sort II
Consider the following algorithm for sorting a list:
- 1. Starting from the beginning of the list, check each pair of adjacent elements in turn.
- 2. If the elements are out of order:
- a. Move the smallest element of the pair at the beginning of the list.
- b. Restart the process from step 1.
- 3. If all pairs are in order, stop.
For example, the list $\{\,4\,1\,3\,2\,\}$ is sorted as follows:
- $\underline{4\,1}\,3\,2$ ($4$ and $1$ are out of order so move $1$ to the front of the list)
- $1\,\underline{4\,3}\,2$ ($4$ and $3$ are out of order so move $3$ to the front of the list)
- $\underline{3\,1}\,4\,2$ ($3$ and $1$ are out of order so move $1$ to the front of the list)
- $1\,3\,\underline{4\,2}$ ($4$ and $2$ are out of order so move $2$ to the front of the list)
- $\underline{2\,1}\,3\,4$ ($2$ and $1$ are out of order so move $1$ to the front of the list)
- $1\,2\,3\,4$ (The list is now sorted)
Let $F(L)$ be the number of times step 2a is executed to sort list $L$. For example, $F(\{\,4\,1\,3\,2\,\}) = 5$.
We can list all permutations $P$ of the integers $\{1, 2, \dots, n\}$ in lexicographical order, and assign to each permutation an index $I_n(P)$ from $1$ to $n!$ corresponding to its position in the list.
Let $Q(n, k) = \min(I_n(P))$ for $F(P) = k$, the index of the first permutation requiring exactly $k$ steps to sort with First Sort. If there is no permutation for which $F(P) = k$, then $Q(n, k)$ is undefined.
For $n = 4$ we have:
P | I4(P) | F(P) | |
---|---|---|---|
{1, 2, 3, 4} | 1 | 0 | Q(4, 0) = 1 |
{1, 2, 4, 3} | 2 | 4 | Q(4, 4) = 2 |
{1, 3, 2, 4} | 3 | 2 | Q(4, 2) = 3 |
{1, 3, 4, 2} | 4 | 2 | |
{1, 4, 2, 3} | 5 | 6 | Q(4, 6) = 5 |
{1, 4, 3, 2} | 6 | 4 | |
{2, 1, 3, 4} | 7 | 1 | Q(4, 1) = 7 |
{2, 1, 4, 3} | 8 | 5 | Q(4, 5) = 8 |
{2, 3, 1, 4} | 9 | 1 | |
{2, 3, 4, 1} | 10 | 1 | |
{2, 4, 1, 3} | 11 | 5 | |
{2, 4, 3, 1} | 12 | 3 | Q(4, 3) = 12 |
{3, 1, 2, 4} | 13 | 3 | |
{3, 1, 4, 2} | 14 | 3 | |
{3, 2, 1, 4} | 15 | 2 | |
{3, 2, 4, 1} | 16 | 2 | |
{3, 4, 1, 2} | 17 | 3 | |
{3, 4, 2, 1} | 18 | 2 | |
{4, 1, 2, 3} | 19 | 7 | Q(4, 7) = 19 |
{4, 1, 3, 2} | 20 | 5 | |
{4, 2, 1, 3} | 21 | 6 | |
{4, 2, 3, 1} | 22 | 4 | |
{4, 3, 1, 2} | 23 | 4 | |
{4, 3, 2, 1} | 24 | 3 |
Let $R(k) = \min(Q(n, k))$ over all $n$ for which $Q(n, k)$ is defined.
Find $R(12^{12})$.