
Permutations of Project
Consider the alphabet $A$ made out of the letters of the word "$\text{project}$": $A=\{\text c,\text e,\text j,\text o,\text p,\text r,\text t\}$.
Let $T(n)$ be the number of strings of length $n$ consisting of letters from $A$ that do not have a substring that is one of the $5040$ permutations of "$\text{project}$".
Find $T(10^{12})$. Give the last $9$ digits of your answer.