P271
projecteuler.net

Modular Cubes, Part 1

ℹ️Published on Saturday, 2nd January 2010, 05:00 am; Solved by 2656;
Difficulty rating: 60%

For a positive number $n$, define $S(n)$ as the sum of the integers $x$, for which $1 \lt x \lt n$ and
$x^3 \equiv 1 \bmod n$.

When $n=91$, there are $8$ possible values for $x$, namely: $9, 16, 22, 29, 53, 74, 79, 81$.
Thus, $S(91)=9+16+22+29+53+74+79+81=363$.

Find $S(13082761331670030)$.



Soluzione

Last modified: May 01, 2025. Website built with Franklin.jl and the lovely Julia programming language.