
Squarefree Numbers
A positive integer $n$ is called squarefree, if no square of a prime divides $n$, thus $1, 2, 3, 5, 6, 7, 10, 11$ are squarefree, but not $4, 8, 9, 12$.
How many squarefree numbers are there below $2^{50}$?
A positive integer $n$ is called squarefree, if no square of a prime divides $n$, thus $1, 2, 3, 5, 6, 7, 10, 11$ are squarefree, but not $4, 8, 9, 12$.
How many squarefree numbers are there below $2^{50}$?