
Perfect Square Collection
Find the smallest $x + y + z$ with integers $x \gt y \gt z \gt 0$ such that $x + y$, $x - y$, $x + z$, $x - z$, $y + z$, $y - z$ are all perfect squares.
Find the smallest $x + y + z$ with integers $x \gt y \gt z \gt 0$ such that $x + y$, $x - y$, $x + z$, $x - z$, $y + z$, $y - z$ are all perfect squares.