
Pandigital Fibonacci Ends
The Fibonacci sequence is defined by the recurrence relation:
$F_n = F_{n - 1} + F_{n - 2}$, where $F_1 = 1$ and $F_2 = 1$.
It turns out that $F_{541}$, which contains $113$ digits, is the first Fibonacci number for which the last nine digits are $1$-$9$ pandigital (contain all the digits $1$ to $9$, but not necessarily in order). And $F_{2749}$, which contains $575$ digits, is the first Fibonacci number for which the first nine digits are $1$-$9$ pandigital.
Given that $F_k$ is the first Fibonacci number for which the first nine digits AND the last nine digits are $1$-$9$ pandigital, find $k$.